首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra-high-molecular-weight (UHMW) polymers display outstanding properties and hold potential for wide applications. However, their precise synthesis remains challenging. Herein, we developed a novel reversible-deactivation radical polymerization based on the strong and selective fluorine–fluorine interaction, allowing chain-transfer agents to spontaneously differentiate into two groups that take charge of the chain growth and reversible deactivation of the growing chains, respectively. This method enables dramatically improved livingness of propagation, providing UHMW polymers with a surprisingly narrow molecular weight distribution (Đ≈1.1) from a variety of fluorinated (meth)acrylates and acrylamide at quantitative conversions under visible-light irradiation. In situ chain-end extensions from UHMW polymers facilitated the synthesis of well-defined block copolymers, revealing the excellent chain-end fidelity achieved by this method.  相似文献   

2.
The development of more active C? H oxidation catalysts has inspired a rapid, scalable, and stereoselective assembly of multifunctional piperazines through a [3+3] coupling of azomethine ylides. A combination of visible‐light irradiation and aluminum organometallics is essential to promote this transformation, which introduces visible‐light photochemistry of main‐group organometallics and sets the basis for new and promising catalysts.  相似文献   

3.
4.
Converting organoboron compounds into the corresponding radicals has broad synthetic applications in organic chemistry. To achieve these transformations, various strong oxidants such as Mn(OAc)3, AgNO3/K2S2O8, and Cu(OAc)2, in stoichiometric amounts are required, proceeding by a single‐electron transfer mechanism. Established herein is a distinct strategy for generating both aryl and alkyl radicals from organotrifluoroborates through an SH2 process. This strategy is enabled by using water as the solvent, visible light as the energy input, and diacetyl as the promoter in the absence of any metal catalyst or redox reagent, thereby eliminating metal waste. To demonstrate its synthetic utility, an efficient acetylation to prepare valuable aryl (alkyl) methyl ketones is described and applications to construct C?C, C?I, C?Br, and C?S bonds are also feasible. Experimental evidence suggests that triplet diacetyl serves as the key intermediate in this process.  相似文献   

5.
A photocatalytic formal [3+2] cycloaddition of 2H‐azirines with alkynes has been achieved under irradiation by visible light in the presence of organic dye photocatalysts. This transformation provides efficient access to highly functionalized pyrroles in good yields and has been applied to the synthesis of drug analogues. A primary trial of photocascade catalysis merging energy transfer and redox neutral reactions was shown to be successful.  相似文献   

6.
Nitrogen heterocycles are found in a majority of approved small‐molecule pharmaceuticals, and the number of approved fluorinated drugs is increasing each decade. Therefore, new approaches for accessing fluorinated nitrogen heterocycles are of great significance. A novel, scalable, and metal‐free method for accessing a wide range of fluorinated indoles is described. This oxidative‐dearomatization‐enabled approach assembles 2‐trifluoromethyl NH‐indole products from simple commercially available anilines with hexafluoroacetylacetone in the presence of an organic oxidant. The nature of the aniline N‐capping group is critical for the success of this new reaction. Furthermore, the indole products contain a 3‐trifluoroacetyl group, which can be exploited to access a plethora of useful functional groups.  相似文献   

7.
The photopolymerization of styrene in emulsion is achieved in a conventional double‐wall reactor equipped with a LED ribbon coiled around the external glass wall. Styrene mixed to acridine orange is added to the water phase containing sodium dodecyl sulfate, a water‐soluble N‐heterocyclic carbene–borane and disulfide, and irradiated. Highly stable latexes are obtained, with particles up to a diameter of 300 nm. The ability to reach such large particle sizes via a photochemical process in a dispersed medium is due to the use of visible light: the photons in the visible range are less scattered by larger objects and thus penetrate and initiate better the polymerizations. They are also greener and cheaper to produce via LEDs, and much safer than UVs. The method presented does not require any specific glassware; it works at lower temperature and delivers larger particles compared to thermal processes at similar solids contents and surfactant concentrations.  相似文献   

8.
An unprecedented α‐allylation of amines was achieved by combining palladium catalysis and visible‐light photoredox catalysis. In this dual catalysis process, the catalytic generation of allyl radical from the corresponding π‐allylpalladium intermediate was achieved without additional metal reducing reagents (redox‐neutral). Various allylation products of amines were obtained in high yields through radical cross‐coupling under mild reaction conditions. Moreover, the transformation was applied to the formal synthesis of 8‐oxoprotoberberine derivatives which show potential anticancer properties.  相似文献   

9.
We present terminal deoxynucleotidyl transferase‐catalyzed enzymatic polymerization (TcEP) for the template‐free synthesis of high‐molecular‐weight, single‐stranded DNA (ssDNA) and demonstrate that it proceeds by a living chain‐growth polycondensation mechanism. We show that the molecular weight of the reaction products is nearly monodisperse, and can be manipulated by the feed ratio of nucleotide (monomer) to oligonucleotide (initiator), as typically observed for living polymerization reactions. Understanding the synthesis mechanism and the reaction kinetics enables the rational, template‐free synthesis of ssDNA that can be used for a range of biomedical and nanotechnology applications.  相似文献   

10.
Ionic conductivity in relation to the morphology of lithium‐doped high‐molecular‐weight polystyrene‐block‐polyethylene oxide (PS‐b‐PEO) diblock copolymer films was investigated as solid‐state membranes for lithium‐ion batteries. The tendency of the polyethylene (PEO) block to crystallize was highly suppressed by increasing both the salt‐doping level and the temperature. The PEO crystallites completely vanished at a salt‐doping ratio of Li/EO>0.08, at which the PEO segments were hindered from entering the crystalline unit of the PEO chain. A kinetically trapped lamella morphology of PS‐b‐PEO was observed, due to PEO crystallization. The increase in the lamella spacing with increasing salt concentration was attributed to the conformation of the PEO chain rather than the volume contribution of the salt or the previously reported increase in the effective interaction parameter. Upon loading the salt, the PEO chains changed from a compact/highly folded conformation to an amorphous/expanded‐like conformation. The ionic conductivity was enhanced by amorphization of PEO and thereby the mobility of the PEO blocks increased upon increasing the salt‐doping level.  相似文献   

11.
A three‐component transition‐metal‐free amidofluorination of unactivated alkenes and styrenes is presented. α‐Amido‐oxy acids are introduced as efficient and easily accessible amidyl radical precursors that are oxidized by a photoexcited organic sensitizer (Mes‐Acr‐Me) to the corresponding carboxyl radical. Sequential CO2 and aldehyde/ketone fragmentation leads to an N‐centered radical that adds to an alkene. Commercial Selectfluor is used to trap the adduct radical through fluorine‐atom transfer. The transformation features by high functional‐group tolerance, broad substrate scope, and practical mild conditions. Mechanistic studies support the radical nature of the cascade.  相似文献   

12.
Well‐defined telechelic‐type aromatic polyamides having a secondary amino group and a phenyl ester moiety at each chain end were prepared by the chain‐growth polycondensation of phenyl 4‐(octylamino)benzoate ( 1 ) with initiator 2 (Ntert‐butoxycarbonylated 1 ), followed by deprotection of the N‐protecting group of the initiator unit. This polycondensation was applied to the synthesis of well‐defined di‐ and triblock copolymers of aromatic polyamides and poly(tetrahydrofuran) (poly(THF)) by the reaction of the terminal secondary amino group of the polyamide with the living cationic propagating group of poly(THF).

Block copolymers of polyamide and poly(tetrahydrofuran).  相似文献   


13.
The introduction of even a small amount of polar functional groups into polyolefins could excise great control over important material properties. As the most direct and economic strategy, the transition‐metal‐catalyzed copolymerization of olefins with polar, functionalized monomers represents one of the biggest challenges in this field. The presence of polar monomers usually dramatically reduces the catalytic activity and copolymer molecular weight (to the level of thousands or even hundreds Da), rendering the copolymerization process and the copolymer materials far from ideal for industrial applications. In this contribution, we demonstrate that these obstacles can be addressed through rational catalyst design. Copolymers with highly linear microstructures, high melting temperatures, and very high molecular weights (close to or above 1 000 000 Da) were generated. The direct synthesis of polar functionalized high‐molecular‐weight polyethylene was thus achieved.  相似文献   

14.
Ultrathin films of a low‐molecular‐weight block copolymer spontaneously dewet after several days at ambient temperature. Film rupture produces macroscopic holes and a residual pancake brush layer ≈ 2 nm thick with intermittent mounds measuring up to 25 nm in thickness. Multiscale dewetting likewise occurs when the films are heated and returned to ambient temperature. Regardless of the surface pattern that forms during heating, submicron mounds develop on the dewetted copolymer film, and fine holes emerge along the substrate surface, after cooling.  相似文献   

15.
By using monochromatic light the ability of semiconductor‐free nanoporous carbons to convert the low‐energy photons from the visible spectrum into chemical reactions (i.e. phenol photooxidation) is demonstrated. Data shows that the onset wavelength of the photochemical activity can be tuned by surface functionalization, with enhanced visible‐light conversion upon introducing N‐containing groups.  相似文献   

16.
Bromodifluoromethylphosphonium bromide was solely used as the precursor of difluorocarbene. Herein, an unprecedented visible‐light‐induced hydrodifluoromethylation of alkenes with bromodifluoromethylphosphonium bromide using H2O and THF as hydrogen sources for the synthesis of difluoromethylated alkanes is described. This difluoromethylation is characterized by mild reaction conditions, ready availability of reagents, and excellent functional‐group tolerance.  相似文献   

17.
The self‐assembled nanostructures of a high‐molecular‐weight rod–coil block copolymer, poly(styrene‐block‐(2,5‐bis[4‐methoxyphenyl]oxycarbonyl)styrene) (PS‐b‐PMPCS), in p‐xylene are studied. The cylindrical micelles, long segmental cylindrical micelle associates, spherical micelles, and spherical micelle associates are observed with increased copolymer concentration. The high molecular weight of PS leads to the entanglement between PS chains from different micelles, which is the force for supramolecular interactions. Short cylindrical micelles are connected end‐to‐end via this supramolecular chemistry to form long segmental cylindrical micelle associates, analogue to the condensation polymerization process, with direction and saturation. On the other hand, spherical micelles assemble via supramolecular chemistry to form spherical micelle associates, yet without any direction due to their isotropic properties.

  相似文献   


18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号