首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhen Fang 《Tetrahedron letters》2008,49(14):2311-2315
A cationic 5,15-(p-(9,9-bis(6-trimethylammoniumhexyl)fluorenylethynyl)phenyl)porphyrin tetrabromide was synthesized and the self-assembled films were used for Hg2+ detection in aqueous media. The detection response is based on fluorescence quenching of the porphyrin molecule upon coordination with Hg2+. The detection shows high selectivity for Hg2+ over Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Ni2+, Co2+ and Ca2+. A linear response toward Hg2+ in a concentration range of 1 × 10−10-1 × 10−6 M was observed for the film with a detection limit of 0.1 nM. The cationic porphyrin film shows higher stability and significant improvement in detection sensitivity, as compared to other porphyrin-based sensors. The amphiphilic cationic nature of the porphyrin synthesized also allows for the direct deposition of a porphyrin layer on a bare glass surface through self-assembly.  相似文献   

2.
A new tri-imidazolium salt, tris(4-(3-(2-((8-hydroxy-9,10-dioxo-9′,10′-dihydroanthracen-1-yl)oxy)ethyl)-1H-imidazole-3′-ium-1′-yl)phenyl)amine hexafluorophosphate was prepared and characterized. Particularly, the recognition performance of the tri-imidazolium salt for cations was investigated through fluorescence and ultraviolet titrations, MS, IR spectra and 1H NMR titrations. The results indicated that the tri-imidazolium salt can distinguish effectively copper(II) ion from other cations by the changes of spectroscopy and colour (from yellow to orange under sunlight). Furthermore, the tri-imidazolium salt was also used in detecting Cu2+ through employing smartphone with the computed detection limit down to 0.51 μM.  相似文献   

3.
An amphiphilic coumarin derivative which forms a π-extended micelle conformation 1 was designed and developed. The exciton efficiently migrates throughout the coumarin aggregates of 1, showing amplified fluorescence quenching in the presence of Cu2+ ions. The 1-Cu2+ complex displays a highly sensitive response to pyrophosphate (PPi), leading to 80% fluorescence recovery. The activity of alkaline phosphatase (ALP) was monitored by a real-time assay where a solution containing 1, Cu2+, and PPi in aqueous solution exhibits a sensitive turn-off fluorescence response to ALP.  相似文献   

4.
A coumarin-based dithiane (1) was synthesized for the selective detection of Hg2+ with respect to dual chromo- and fluorogenic changing events in an aqueous solution by the mercury-promoted transformation of a dithiane group into an aldehyde functional unit. The Hg2+-selective response of the chemodosimeter was clearly observed in aqueous buffer as well as in human blood plasma medium.  相似文献   

5.
The reaction of 1,3-dipropyn-2-yloxycalix[4]arene with mercury(II)acetate could give mercury-containing alkynyl calixarenepolymer.The extraction behavior of 1,3-dipropyn-2-yl-oxycalix[4]arene towards mercury(II)ion was examined.When the moleratio of Hg~(2 )/calixarene was 1:1,the extractive percent can reach to 99.1%,and the extraction capacity was up to 431 mg/g.It couldalso decrease the Hg~(2 )concentration from 5 to 0.85 mg/L,which was only 17%of the national standard of effluent and satisfied thenational standard of drinking water.The extraction process included chemical reaction.  相似文献   

6.
High-quality cysteamine-coated CdTe quantum dots (CA-CdTe QDs) were successfully synthesized in aqueous phase by a facile one-pot method. Through hydroxylamine hydrochloride-promoted kinetic growth strategy, water-soluble CA-CdTe QDs could be obtained conveniently in a conical flask by a stepwise addition of raw materials. The photoluminescence quantum yield (PL QY) of the obtained QDs reached 9.2% at the emission peak of 520 nm. The optical property and the morphology of the QDs were characterized by UV–vis absorption spectra, photoluminescence spectra (PL) and transmission electron microscopy (TEM) respectively. Furthermore, the fluorescence of the resultant QDs was quenched by copper (II) (Cu2+) and mercury (II) (Hg2+) meanwhile. It is worthy of note that to separately detect Hg2+, cyanide ion could be used to eliminate the interference of Cu2+. Under the optimal conditions, the response was linearly proportional to the logarithm of Hg2+ concentration over the range of 0.08–3.33 μM with a limit of detection (LOD) of 0.07 μM.  相似文献   

7.
<正>A novel and simple fluorescent molecular sensor,1-pyrenecarboxaldehyde thiosemicarbazone(Hpytsc),was synthesized.Its higher sensitivity and selectivity to mercury(Ⅱ) ion were studied through absorption and emission channels.The UV-vis spectra show that the increasing mercury(Ⅱ) ion concentrations result in the decreasing absorption intensity.The fluorescence monomer emission of Hpytsc is enhanced upon binding mercury(Ⅱ) ion,which should be due to the 1:1 complex formation between Hpytsc and metal ion.  相似文献   

8.
9.
A rapid,sensitive,selective and reliable strip assay based on DNA-functionalized gold nanoparticles for Hg2+ detection has been developed,with a detection limit 5 nmol/L.The measurement principle was based on thymine-Hg2+-thymine(T-Hg2+-T) coordination chemistry and streptavidin-biotin interaction.The major advantages of this assay are that results can be read visually without any instrument in less than 10 min and that it does not require any sample pretreatment.  相似文献   

10.
In this study, we developed a fluorescence assay for the highly sensitive and selective detection of Hg2+ and Pb2+ ions using a gold nanoparticle (Au NP)-based probe. The Hg–Au and Pb–Au alloys that formed on the Au NP surfaces allowed the Au NPs to exhibit peroxidase-mimicking catalytic activity in the H2O2-mediated oxidation of Amplex UltraRed (AUR). The fluorescence of the AUR oxidation product increased upon increasing the concentration of either Hg2+ or Pb2+ ions. By controlling the pH values of 5 mM tris–acetate buffers at 7.0 and 9.0, this H2O2–AUR–Au NP probe detected Hg2+ and Pb2+ ions, respectively, both with limits of detection (signal-to-noise ratio: 3) of 4.0 nM. The fluorescence intensity of the AUR oxidation product was proportional to the concentrations of Hg2+ and Pb2+ ions over ranges 0.05–1 μM (R2 = 0.993) and 0.05–5 μM (R2 = 0.996), respectively. The H2O2–AUR–Au NP probe was highly selective for Hg2+ (>100-fold) and Pb2+ (>300-fold) ions in the presence of other tested metal ions. We validated the practicality of this simple, selective, and sensitive H2O2–AUR–Au NP probe through determination of the concentrations of Hg2+ and Pb2+ ions in a lake water sample and of Pb2+ ions in a blood sample. To the best of our knowledge, this system is the first example of Au NPs being used as enzyme-mimics for the fluorescence detection of Hg2+ and Pb2+ ions.  相似文献   

11.
A dual colorimetric and luminescent sensor based on a heteroleptic ruthenium dye[Ru(Hipdpa)(Hdcbpy)(NCS)_2]~-·0.5H~+ 0.5[N(C_4H_9)_4]~+ Ru(Hipdpa) {where Hdcbpy = monodeprotonted-4,4'-dicarboxy-2.2'-bipyridineand Hipdpa = 4-(1H-imidazo[4,5-f][l,10]phenanthroIin-2-yl)-N,N-diphenylaniIine} for selective detection of Hg~(2+) is presented.The results of spectrophotometric titrations revealed an evident luminescence intensity enhancement(I/I_0 =11) and a considerable blue shift in visible absorption and luminescence maxima with the addition of Hg~(2+).The sensitive response of the optical sensor on Hg~(2+) was attributed to the binding of the electron-deficient Hg~(2+) to the electron-rich sulfur atom of the thiocyanate(NCS) ligand in the Ru(Hipdpa).which led to an increase in the energy gap between the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO).Accordingly,the blue shift in the absorption spectrum of Ru(Hipdpa) due to the binding of Hg~(2+) was obtained.Ru(Hipdpa) was found to have decreased Hg~(2+) detection limit and improved linear region as compared to di(tetrabutylammonium) ris-bis(isothiocyanato)bis(2,2'-bipyridine-4-carboxylic acid-4'-carboxylate)ruthenium(Ⅱ) N719.Moreover,a dramatic color change from pink to yellow was observed,which allowed simple monitoring of Hg~(2+) by either naked eyes or a simple colorimetric reader.Therefore,the proposed sensor can provide potential applications for Hg~(2+) detection.  相似文献   

12.
Chen HQ  Fu J  Wang L  Ling B  Qian BB  Chen JG  Zhou CL 《Talanta》2010,83(1):139-144
With the biomolecule glutathione (GSH) as a capping ligand, Eu3+-doped cadmium sulfide composite nanoparticles were successfully synthesized through a straightforward one-pot process. An efficient fluorescence energy transfer system with CdS nanoparticles as energy donor and Eu3+ ions as energy accepter was developed. As a result of specific interaction, the fluorescence intensity of Eu3+-doped CdS nanoparticles is obviously reduced in the presence of Hg2+. Moreover, the long fluorescent lifetime and large Stoke's shift of europium complex permit sensitive fluorescence detection. Under the optimal conditions, the fluorescence intensity of Eu3+ at 614 nm decreased linearly with the concentration of Hg2+ ranging from 10 nmol L−1 to 1500 nmol L−1, the limit of detection for Hg2+ was 0.25 nmol L−1. In addition to high stability and reproducibility, the composite nanoparticles show a unique selectivity towards Hg2+ ion with respect to common coexisting cations. Moreover, the developed method was applied to the detection of trace Hg2+ in aqueous solutions. The probable mechanism of reaction between Eu3+-doped CdS composite nanoparticles and Hg2+ was also discussed.  相似文献   

13.
Two new highly selective colorimetric chemosensors for Hg2+, based on azobenzene and highly selective Hg2+‐promoted deprotection of a dithioacetal have been designed and synthesized. In the presence of as little as 20 μM Hg2+, the sensors change their color from light yellow to deep red, which can easily be observed by the naked eye. The underlying signaling mechanism is intramolecular charge transfer (ICT). The sensors have good selectivity for Hg2+ with respect to several common alkali, alkaline earth, and transition metal ions. Furthermore, they can be used for in‐the‐field measurements by virtue of a dipstick approach without any additional equipment.  相似文献   

14.
An optical sensor for mercury ion (Hg2+), based on quenching the fluorescence of the sensing reagent porphyrin immobilized in plasticized poly(vinyl chloride) (PVC) membrane, has been developed. The responses to mercury ion were compared for the sensors modified with three porphyrin compounds including 5,10,15,20-tetraphenylporphyrin (TPP), tetra(p-dimethylaminophenyl)porphyrin (TDMAPP) and tetra(N-phenylpyrazole) porphyrin (TPPP). Among them, TDMAPP showed the most remarkable response to Hg2+. The drastic decrease of the TDMAPP fluorescence intensity was attributed to the formation of a complex between TDMAPP and Hg2+, which has been utilized as the fabrication basis of a Hg2+-sensitive fluorescence sensor. The analytical performance characteristics of the TDMAPP modified sensor was investigated. The response mechanism, especially involving the response difference of three porphyrin compounds, was discussed in detail. The sensor can be applied to the quantification of Hg2+ with a linear range covering from 4.0 × 10−8 mol L−1 to 4.0 × 10−6 mol L−1. The limit of detection was 8.0 × 10−9 mol L−1. The sensor exhibited excellent reproducibility, reversibility and selectivity. Also, the TDMAPP-based sensor was successfully used for the determination of Hg2+ in environmental water samples.  相似文献   

15.
This work reports a surface ion imprinting strategy in electropolymerized microporous poly(2-mercaptobenzothiazole) (MPMBT) films at the surface of glassy carbon electrode (GCE) for the electrochemical detection of Hg(II). The Hg(II)-imprinted MPMBT/GCE exhibits larger binding to functionalized capacity, faster binding kinetics and higher selectivity to template Hg(II) due to their high ratio of surface-imprinted sites, larger surface-to-volume ratios, the complete removal of Hg(II) templates and larger affinity to Hg(II). The square wave anodic stripping voltammetry (SW ASV) response of the Hg(II)-imprinted MPMBT/GCE to Hg(II) is ca. 3.0 and 5.9 times larger than that at the direct imprinted poly(2-mercaptobenzothiazole) modified GCE and non-imprinted MPMBT/GCE sensor, respectively; and the detection limit for Hg(II) is 0.1 nM (which is well below the guideline value given by the World Health Organization). Excellent wide linear range (1.0–160.0 nM) and good repeatability (relative standard deviation of 2.5%) were obtained for Hg(II). The interference experiments showed that mercury signal was not interfered in the presence of Pb(II), Cd(II), Zn(II), Cu(II) and Ag(I), respectively. These values, particularly the high sensitivity and excellent selectivity compared favorably with previously reported methods in the area of electrochemical Hg(II) detection, demonstrate the feasibility of using the prepared Hg(II)-imprinted MPMBT/GCE for efficient determination of Hg(II) in aqueous environmental samples.  相似文献   

16.
A novel fluorometric sensor bearing three dansyl moieties based on tris[2-(2-aminoethylthio)ethyl]amine was prepared by a simple approach using a conventional two-step synthesis. The sensor exhibits highly Hg2+-selective ON-OFF fluorescence quenching behavior in aqueous acetonitrile solutions and is shown to discriminate various competing metal ions, particularly Cu2+, Ag+, and Pb2+ as well as Ca2+, Cd2+, Co2+, Fe3+, Mn2+, Na+, Ni2+, and Zn2+, with a detection limit of 1.15 × 10−7 M or 23 ppb.  相似文献   

17.
A selective, sensitive probe for Hg(II) ions, 7-(diethylamino)-3-methyl-2H-benzo[b][1,4] oxazine-2-thione (1), is developed. Compound 1 behaves as a ratiometric probe, exhibiting a large blue shift of 100 nm in its absorption spectra upon exposure to Hg(II) ions. The dramatic color change of the solution made ‘naked-eye’ detection of Hg(II) ions possible. Emission spectra of 1 displayed a selective enhancement in intensity in the presence of Hg(II) ions. ESI+-MS analysis indicated that Hg2+-induced desulfurization caused the large absorption response.  相似文献   

18.
It is highly attractive to develop a detection system that is not only sensitive and selective but also simple, rapid, practical and cost-effective in operation. Here, we report an interesting observation that single-stranded oligonucleotide (ssDNA) can adsorb efficiently on carboxylic acid-functionalized magnetic nanoparticles (CAMNPs) and stabilize the nanoparticles against aggregation in weakly acidic solution. The adsorbing rate closely correlates with the pH of the solution, the temperature and the sequence length of ssDNA. On the basis of this observation, we have designed a highly sensitive, non-sandwich type magnetic relaxation-based detection system for quantitatively probing mercury ion. The assay is independent of the sample's optical properties, requires no covalent modification of the ssDNA or the CAMNPs surfaces, and can be used for high-throughput analysis. By varying the concentration of CAMNPs, four orders of dynamic response range and a detection limit of 0.3 nM for Hg2+ are achieved. Moreover, we developed a multi-sample assay to detect Hg2+ in real environmental samples with high sensitivity, selectivity and efficiency.  相似文献   

19.
CdSe/CdS quantum dots(QDs) functionalized by thiourea(TU) were synthesized and used as a fluorescent sensor for mercury ion detection.The TU-functionalized QDs were prepared by bonding TU via electrostatic interaction to the core/shell CdSe/CdS QDs after capping with thioglycolic acid(TGA).It was observed that the fluorescence of the functionalized QDs was quenched upon the addition of Hg~(2+).The quantitative detection of Hg~(2+) with this fluorescent sensor could be conducted based on the linear relationship between the extent of quenching and the concentration of Hg~(2+) added in the range of1-300 μg L~(-1).A detection limit of 0.56 μg L~(-1) was achieved.The sensor showed superior selectivity for Hg~(2+) and was successfully applied to the determination of mercury in environmental samples with satisfactory results.  相似文献   

20.
An efficient DBU promoted Darzens reaction utilising α-haloketones containing an enolizable α′-hydrogen is reported. This method diastereoselectively afforded the corresponding α,β-epoxy ketones good to excellent yields in an one-pot reaction without using any transition metals or additives. Furthermore, haloketones without an α′-hydrogen are also applicable in this reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号