首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李广科a  b  刘敏a  b  杨国强a  陈传峰  a  黄志镗  a 《中国化学》2008,26(8):1440-1446
我们方便地合成了上沿修饰四丹磺酰胺基团的杯[4]芳烃衍生物1,发现该化合物在含50%水的乙腈中显示出对汞离子高选择性和灵敏性的识别作用,竞争实验表明多数金属离子对其检测干扰较小。机理研究结果表明荧光萃灭源于由丹磺酰胺基团到汞离子的光致电子转移过程。另外,通过研究1和1-Hg2+的荧光衰减实验,以及对比双丹磺酰胺杯[4]芳烃2和单丹磺酰胺杯[4]芳烃3对汞离子的识别作用,发现化合物1的四丹磺酰胺基团具有很好的预组织和协同作用。化合物1对汞离子的检测限为3.41×10-6 mol·L-1,这可以使1成为一个潜在的汞离子荧光化学传感器。  相似文献   

2.
通过“click”反应合成了两个新的由三氮唑连接的含芘的杯[4]芳烃。 化合物1含有两个芘单元,对Zn2+表现出比率荧光响应,且对Cu2+, Hg2+ 和 Pb2+表现出选择性的荧光淬灭;而化合物2只含一个芘单元,对铜离子有显著的荧光淬灭,对汞离子有中等程度的荧光淬灭。利用化合物1对锌离子和铜离子不同的荧光响应,设计了INH和NOR逻辑门。  相似文献   

3.
2-(2′,5′-Dihydroxy-phenyl)-4(3H)-quinazolinone (DHPQ), a new fluorescent dye that exhibits excited state intramolecular proton transfer (ESIPT) reaction and possesses good photophysical properties, is synthesised and used as fluorescent probe for detection of Hg2+. Mercuric ions can be detected and quantitated by measuring the fluorescent intensity decrease of the probe. The decrease of fluorescence intensity of DHPQ upon the addition of Hg2+ was attributed to the blocking of ESIPT reactions of DHPQ and quenching its fluorescence. The analytical performance characteristics of the proposed Hg2+ probe were investigated. The probe can be applied to the quantification of Hg2+ with a concentration range covering from 8.0?×?10?7 to 2.0?×?10?4?mol?L?1, with a working pH range of 5.5–6.5. It shows excellent selectivity for Hg2+ over other transition metal cations. The proposed method was testified for the Hg2+ assay in river water samples with satisfying recoveries.  相似文献   

4.
Abstract

A fluorescent sensor TPE-TSC with aggregation induced emission (AIE) characteristic is synthesized for detecting Hg2+ by attaching thiosemicarbazide (TSC) unit into tetraphenylethylene (TPE) group. TPE-TSC exhibits intense green emission in DMSO/H2O (V:V?=?1:9) solution with the formation of the aggregation. TPE-TSC shows outstanding fluorescence quenching toward Hg2+ over other metal ions due to the formation of complex TPE-TSC/Hg2+ with a 2:1 binding ratio. The detection limit of TPE-TSC for Hg2+ is 1?×?10?5 mol·L?1.  相似文献   

5.
By rationally introducing glutathione functionalized 1, 8–naphthalimide, a novel fluorescent chemosensor (NG) was successfully synthesized. NG can high selectively and sensitively recognize Fe3+/Hg2+ ions through quenching of fluorescence among all kinds of common metal ions in aqueous medium. The binding stoichiometry ratio of NG–Fe3+ is verified as 2:1and NG–Hg2+ as 1:2 confirmed by Job's plot method, FT-IR, 1H NMR and ESI–MS spectrum, and the possible sensing mechanism were also proposed. The chemosensor NG toward Fe3+ and Hg2+ displays the excellent advantages of high selectivity and sensitivity, low detection limits (7.92?×?10?8 and 4.22?×?10?8?M), high association constants (3.37?×?108 and 8.14?×?104?M?2), instataneous response (about 10s) and wide pH response range (3.0–8.0). Importantly, the chemosensor NG was successfully applied to determine Hg2+ in tap water. Meanwhile, the test strips based on NG were prepared, which could conveniently and efficiently detect Fe3+ and Hg2+. Moreover, the complex of NG and Fe3+ (NG–Fe3+) showed high selectivity and sensitivity for H2PO4 ̄ over many other anions in the same medium.  相似文献   

6.
2-Amino-6-methyl-4-phenyl-nicotinonitrile 1, a 2-aminopyridine-based fluorescent compound, was found to be a fluorescent chemosensor for the detection of Fe3+ and Hg2+ ions over a number of other metal ions. Compound 1 was synthesized in one step using a multicomponent reaction, and characterized using common spectroscopic tools. During Fe3+/Hg2+ sensing the compound 1 followed a ‘switch-off’ mechanism. Further, compound 1 could sense Fe3+ over Hg2+ by its distinct absorption and fluorescence quenching behaviors. 1:1 complex formation of 1 with Fe3+ and Hg2+ was clearly understood from Job’s plot. The present work brings additional evidence on the importance of multicomponent reactions which could lead to the development of fluorescence chemosensor in one step for the selective detection of biologically important metal ions.  相似文献   

7.
An approach for the sensitive and selective determination of Ag+, Cu2+ and Hg2+ ions was developed based on the fluorescence quenching of mercaptopropionic acid (MPA) capped CdTe quantum dots in the existence of hydroxyapatite (HAP) nanoribbon spherulites. Among various metal ions investigated, it was found that the fluorescence of CdTe QDs was only sensitive to Ag+, Cu2+ and Hg2+ ions. The addition of HAP into the CdTe system could bring forward a sensitivity improvement of about 1 to 2 orders of magnitude in the detection of Ag+ and Cu2+ compared with the plain CdTe system without the existence of HAP; while there was no sensitization effect for Hg2+. Under optimal conditions, the detection limits for Ag+, Cu2+ and Hg2+ were 20, 56 and 3.0 nmol·L?1, respectively, and the linear ranges were 0.02–50, 0.056–54 and 0.003–2.4 µmol·L?1, respectively. Mechanisms of both QDs fluorescence quenching by metal ions and the sensitization effect by HAP were also discussed.  相似文献   

8.
A novel fluorescent ratiometric chemosensor based on 4-pyren-1-yl-pyrimidine (PPM) has been designed and prepared for the detection of Hg2+ in the presence of other competing metal ions in acetonitrile. The photo exhibits fluorescence color change of PPM from blue to green without and with Hg2+, which red shift of wavelength about 105 nm in fluorescence emission spectra. It can serve as a highly selective chemodosimeter for Hg2+ with ratiometric and naked-eye detection. The photophysical properties of PPM confirmed a 2:1 (PPM–Hg2+) binding model and the spectral response toward Hg2+ was proved to be reversible.  相似文献   

9.
A simple (R)-(−)-2-phenylglycinol functionalized Schiff base L1 and its characterization as a fluorescent–colorimetric sensor for Hg2+ ion are described. The UV–vis and fluorescence analysis in methanol and aqueous solution show complex formation between L1 and Hg2+ ion with a micromolar association constant. Competition experiments performed for the acetate salts of Hg2+, Zn2+, Co2+, Pb2+, Cd2+, Mn2+, Cu2+, Ni2+, and Ba2+ revealed that compound L1 exhibits high selectivity toward Hg2+ displaying a color change easily detectable by naked-eye and a turn-off fluorescent effect due to a chelation-enhanced quenching (CHEQ) mechanism. Moreover, addition of EDTA to L1–Hg2+ recovers the fluorescence and color offering receptor L1 as a reversible sensor for real-time applications.  相似文献   

10.
A new thiacalix[4]arene derivative in a 1,3-alternate conformation bearing four naphthalene groups through crown-3 chains has been synthesized, which exhibits high selectivity toward Hg2+ by forming a 1:2 complex, among other metal ions ( Na+, K+, Mg2+, Ba2+, Ca2+, Sr2+, Cs+, Mn2+, Fe2+, Cd2+, Co2+, Ni2+, Cu2+, Li+, and Zn2+) with a low detection limit (3.30×10?7 M). The metal ion-binding properties were studied by fluorescence, AFM, and 1H NMR spectroscopy. The in situ prepared [Hg2++L] complex shows well recognition ability for cysteine with a low detection limit (2.23×10?7 M) through fluorescence turning on. The mechanism of fluorescence turning on is the host L releasing from [L+Hg2+] for [Cys+Hg2+] complex formed. Thus the paper reports secondary-sensor design: Hg2+ as a first sensor for [L+Hg2+] form, cysteine as a second sensor for Hg2+ releasing from the [L+Hg2+] complex after cysteine adding in.  相似文献   

11.
A new pyrene derivative (1) containing a diaminomaleonitrile moiety exhibits high selectivity for Cu2+ detection. Significant fluorescence enhancement was observed with chemosensor 1 in the presence of Cu2+. However, the metal ions Ag+, Ca2+, Cd2+, Co2+, Fe2+, Fe3+, Hg2+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ produced only minor changes in fluorescence values for the system. The apparent association constant (Ka) of Cu2+ binding in chemosensor 1 was found to be 5.55×103 M−1. The maximum fluorescence enhancement caused by Cu2+ binding in chemosensor 1 was observed over the pH range 5-7.5.  相似文献   

12.
By applying an indirect strategy, a new copper (Ⅱ) complex of a thiosemicarbazone L has been successfully developed as a colorimetric chemosensor for the sensitive detection of mercury (Ⅱ) ions. In the presence of copper (Ⅱ) ions, the colorless solution of L became yellow; however, upon the addition of traces of mercury (Ⅱ) ions, the yellow color faded to colorless immediately. Other ions, including Fe3+ , Ag+ , Ca2+ , Zn2+ , Pb2+ , Cd2+ , Ni2+ , Co2+ , Cr3+ and Mg2+ had a negligible influence on the probe behavior. The detection limits were 5.0×10 -6 M and 3.0×10 -7 M of Hg2+ using the visual color changes and UV-vis changes respectively. Test strips based on Cu-L were fabricated, which could act as a convenient and efficient Hg2+ test kits.  相似文献   

13.
Meng Q  Zhang X  He C  Zhou P  Su W  Duan C 《Talanta》2011,84(1):53-59
A novel hybrid material (SBA-P1) is prepared through the functionalization of mesoporous silica (SBA-15) with a 1,8-naphthalimide-based dye by sol-gel reaction. The characterization results of elemental analysis (EA), X-ray powder diffractometer (XRD) and spectroscopic methods demonstrate the fluorescence dye P1 is successfully grafted onto the inner surface of SBA-15 and the organized structure is preserved. SBA-P1 can detect Hg2+ with high selectivity to Cu2+, Zn2+, Cd2+, Pb2+, Mn2+, Ni2+, Co2+, Ag+, Cr3+, and Mg2+, Ca2+, Li+, Na+, K+ in water and sensitivity to environmentally relevant mercury in complex natural samples. The quenching fluorescence detection is also reversible by treating with EDTA/base. Furthermore, its fluorescence intensity keeps stable in the physiologically relevant pH range. The extraction ability of SBA-P1 is also estimated by inductively coupled plasma source mass spectrometer (ICP), showing that approximately 90% of the Hg2+ ion is extracted. These results imply that the hybrid material has potential application for sensing and removing of Hg2+ ions in waste water and working as toxicide for acute mercury poisoning.  相似文献   

14.
Spiropyrans are the most studied families of func- tional materials due to their reversible structural con- version in response to external optical, chemical, and thermal stimulation[1]. Irradiation with ultraviolet light causes formation of an extended π-conjugation open form (merocyanine form) by heterolytic cleavage of the C (spiro)-O bond, which generates an intense ab- sorption in the visible region. Under the irradiating of visible light, the opened form will come back to the closed spi…  相似文献   

15.
Selective metal ion detection is highly desired in fluorometric analysis. In the current study a curcumin-based fluorescence-on probe/[(2E,6E)-2,6-bis(4-(dimethylamino) benzylidene) cyclohexanone]/probe was designed for the removal of one of the most toxic heavy metal ion i.e. Hg2+. The structure of the probe was confirmed by FTIR and 1H NMR spectroscopic analysis displaying distinctive peaks. The complex formation between probe and Hg2+ ion was also studied by density functional theory to support the experimental results. Chelation enhanced fluorescence was observed upon interaction with Hg2+ ion. Different parameters like pH, effect of mercury ion concentration, contact time, interference study and effect of probe concentration on the fluorescence enhancement were also investigated. A rapid response was detected for Hg2+ ion with limit of detection and quantification as 2.7 nM and 3 nM respectively with association constant of 1 × 1011 M?2. The probe displayed maximum fluorescence intensity at physiological pH. The results showed that the synthesized probe can be employed as an excellent probe for the detection and quantification of Hg2+ ions in aqueous samples with high selectivity and sensitivity due to its higher binding energy and larger charge transferring ability.  相似文献   

16.
A novel coumarin-based compound 1 featuring thiosemicarbazone as binding unit, was reported as a colorimetric and fluorescent probe for the detection of fluoride anion. The addition of F? to a solution of probe 1 in tetrahydrofuran resulted in evident naked-eye color change from green-yellow to orange-red under daylight and obvious fluorescence quenching within 3 s. And the detection limit toward F? was calculated to be as low as 2.16 × 10?7 mol/L. 1H NMR titrations proved that the interaction between 1 and fluoride ion: hydrogen bond at low fluoride ion concentration, deprotonation at high fluoride ion concentration. Besides, it exhibited highly sensitivity and selectivity for F? over other examined ions (Cl?, Br?, I?, AcO?, NO3?, HSO4?, H2PO4?) in tetrahydrofuran solution.  相似文献   

17.
By using a copper‐promoted alkyne–azide cycloaddition reaction, two boron dipyrromethene (BODIPY) derivatives bearing a bis(1,2,3‐triazole)amino receptor at the meso position were prepared and characterized. For the analogue with two terminal triethylene glycol chains, the fluorescence emission at 509 nm responded selectively toward Hg2+ ions, which greatly increased the fluorescence quantum yield from 0.003 to 0.25 as a result of inhibition of the photoinduced electron transfer (PET) process. By introducing two additional rhodamine moieties at the termini, the resulting conjugate could also detect Hg2+ ions in a highly selective manner. Upon excitation at the BODIPY core, the fluorescence emission of rhodamine at 580 nm was observed and the intensity increased substantially upon addition of Hg2+ ions due to inhibition of the PET process followed by highly efficient fluorescence resonance energy transfer (FRET) from the BODIPY core to the rhodamine moieties. The Hg2+‐responsive fluorescence change of these two probes could be easily seen with the naked eye. The binding stoichiometry between the probes and Hg2+ ions in CH3CN was determined to be 1:2 by Job′s plot analysis and 1H NMR titration, and the binding constants were found to be (1.2±0.1)×1011 m ?2 and (1.3±0.3)×1010 m ?2, respectively. The overall results suggest that these two BODIPY derivatives can serve as highly selective fluorescent probes for Hg2+ ions. The rhodamine derivative makes use of a combined PET‐FRET sensing mechanism which can greatly increase the sensitivity of detection.  相似文献   

18.
An efficient fluorescent chemosensor for Hg2+ ion, based on 5-(dimethylamino)-N-(2-mercaptophenyl)naphthalene-1-sulfonamide, has been developed. It exhibits Hg2+-selective on–off fluorescence quenching behavior via twisted intramolecular charge transfer (TICT) mechanism, which is rationalized by time dependent density functional theory (TD-DFT) calculations. The system exhibits visible color change from colorless to gray upon Hg2+ binding with very high selectivity and sensitivity (as low as 5.0 × 10−10 mol L−1) over other metal ions such as K+, Na+, Ag+, Mn2+, Ca2+, Ba2+, Fe2+, Zn2+, Pb2+, Cu2+, Sn2+, Cd2+, Ni2+ and Co2+. The present sensing system is also successfully applied for the detection of Hg2+ ion in real samples.  相似文献   

19.
We have developed a simple method for the preparation of highly fluorescent and stable, water-soluble CdTe quantum dots in sol-gel-derived composite silica spheres that were coated with calix[6]arene. The resulting nanoparticles (NP) were characterized in terms of UV, fluorescence and FT-IR spectroscopy and by TEM. The results show that the new NPs display more intense fluorescence intensity and are more stable than its precursors of the type SiO2/CdTe. In addition, the new NPs exhibit a higher selectivity for the determination of Hg2+ than for other metal ions. Under the optimum conditions, the relative fluorescence intensity decreases with the concentration of Hg2+ in the range from 2.0 to 14.0?nmol?L?1 and the detection limit is 1.55?nmol?L?1. The method is based on the quenching of fluorescence by Hg2+ and expected to serve as a practical fluorescence test for rapid detection of Hg2+. A mechanism is suggested to explain the inclusion process by a Langmuir binding isotherm, and fluorescence quenching is best described by the Stern-Volmer equation.
Figure
The Scheme suggests that we synthesis of CdTe nanocystals in sol-gel-derived composite silica spheres coated with Calix[6]arene (C[6]/SiO2/CdTe NPs). The new C[6]/SiO2/CdTe NPs display more intense fluorescence intensity and are more stable than its precursors of the type SiO2/CdTe NPs. Under the optimum conditions, the relative fluorescence intensity decreases with the concentration of Hg2+. The C[6]/SiO2/CdTe NPs as fluorescent probes can be used for ultrasensitive, highly selective, simple, convenient and rapidly efficient detection of extremely trace amount of heavy metal ion Hg2+.  相似文献   

20.
Anthroneamine derivatives 13 (H2O:DMSO; 9:1, HEPES buffer, pH 7.0 ± 0.1) undergo highly selective fluorescence quenching with Hg2+. The observed linear fluorescence intensity change allows the quantitative detection of Hg2+ between 200 nM/40 ppb—12 μM/2.4 ppm even in the presence of interfering metal ions viz. Na+, K+, Mg2+, Ca2+, Ba2+, Cr3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Pb2+. Probes 13 and their Hg2+ complexes also show the broad pH resistance for their practical applicability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号