首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Inorganic metal–oxygen cluster anions form a class of compounds that is unique in its topological and electronic versatility and is important in several disciplines. Names such as Berzelius, Werner, and Pauling appear in the early literature of the field. These clusters (so-called isopoly- and heteropolyanions) contain highly symmetrical core assemblies of MOx units (M = V, Mo, W) and often adopt quasi-spherical structures based on Archimedean and Platonic solids of considerable topological interest. Understanding the driving force for the formation of high-nuclearity clusters is still a formidable challenge. Polyoxoanions are important models for elucidating the biological and catalytic action of metal–chalcogenide clusters, since metal–metal interactions in the oxo clusters range from very weak (virtually none) to strong (metal–metal bonding) and can be controlled by choice of metal (3d, 4d, 5d), electron population (degree of reduction), and extent of protonation. Mixed-valence vanadates, in particular, show novel capacities for unpaired electrons, and the magnetic properties of these complexes may be tuned in a stepwise manner. Many vanadates also act as cryptands and clathrate hosts not only for neutral molecules and cations but also for anions, whereby a remarkable “induced self-assembly process” often occurs. Polyoxometalates have found applications in analytical and clinical chemistry, catalysis (including photocatalysis), biochemistry (electron transport inhibition), medicine (antitumoral, antiviral, and even anti-HIV activity), and solid-state devices. These fields are the focus of much current research. Metal–oxygen clusters are also present in the geosphere and possibly in the biosphere. The mixed–valence vanadates contribute to an understanding of the extremely versatile geochemistry of the metal. The significant differences between the chemistry of the polyoxoanions and that of the thioanions of the same elements is of relevance to heterogeneous catalysis, bioinorganic chemistry, and veterinary medicine.  相似文献   

3.
Supramolecular systems chemistry has been an area of active research to develop nanomaterials with life-like functions. Progress in systems chemistry relies on our ability to probe the nanostructure formation in solution. Often visualizing the dynamics of nanostructures which transform over time is a formidable challenge. This necessitates a paradigm shift from dry sample imaging towards solution-based techniques. We review the application of state-of-the-art techniques for real-time, in situ visualization of dynamic self-assembly processes. We present how solution-based techniques namely optical super-resolution microscopy, solution-state atomic force microscopy, liquid-phase transmission electron microscopy, molecular dynamics simulations and other emerging techniques are revolutionizing our understanding of active and adaptive nanomaterials with life-like functions. This Review provides the visualization toolbox and futuristic vision to tap the potential of dynamic nanomaterials.  相似文献   

4.
Intercluster compounds, [{(Au{P(pXPh)3})2(μ‐OH)}2][α‐SiMo12O40(Au{P(pXPh)3})2] · nEtOH [X = F ( 1 ), Cl ( 2 )] were synthesized by polyoxometalate (POM)‐mediated clusterization, and were unequivocally characterized by X‐ray crystallography, elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), Fourier transform infrared (FT‐IR), solid‐state cross‐polarization magic‐angle‐spinning (CPMAS) 31P nuclear magnetic resonance (NMR), and solution (1H, 31P{1H}) NMR spectroscopy. The “dimer‐of‐dinuclear phosphanegold(I) cation”, i.e., [{(Au{P(pXPh)3})2(μ‐OH)}2]2+ was formed by the self‐assembly of dinuclear phosphanegold(I) cations, i.e., [(Au{P(pXPh)3})2(μ‐OH)]+, through inter‐cationic aurophilic interactions as the crossed‐edge arrangement (or tetrahedral Au4 structure) for 1 , while as the parallel‐edge arrangement (or rectangular Au4 structure) for 2 . The latter arrangement was first attained only by assistance of the POM. The POM anions in 1 and 2 contained two mononuclear phosphanegold(I) cations, i.e., [Au{P(pXPh)3}]+, linked to the OMo2 oxygen atoms of edge‐sharing MoO6 octahedra. In the solution 31P{1H} NMR of 1 and 2 , we observed single signals due to the rapid exchange of the phosphanegold(I) units. This shows that the OMo2 oxygen atoms of edge‐sharing MoO6 octahedra in the Keggin POM act as multi‐centered active binding sites for the formation of [{(Au{P(pXPh)3})2(μ‐OH)}2]2+.  相似文献   

5.
Employing a “one‐pot” synthesis strategy, the reaction of Na2WO4·2H2O, Na2HAsO4·7H2O, FeCl3·6H2O, various Ln3+ ions, and hexamethylenetetramine (HMTA) in aqueous solutions with pH values ranging from 5.5 to 6.5 results in the isolation of polytungstoarsenate‐based iron aggregates, ‐K8Na14[HMTA]4[(FeIII3FeII0.25(OH)3)(AsO4)(AsW9O34)]4·24H2O ( 1 ) (HMTA = hexamethylenetetraamine). The polyoxoanion of 1 contains a mixed‐valent {FeIII12FeII3‐OH)124‐AsO4)4} cluster surrounded by four [B‐α‐AsW9O34]9? units. It is the first polytungstatoarsenate‐based mixed‐valent {FeIII12FeII} aggregate and the largest iron cluster based on [AsW9O34]9? ligands. The compound was characterized by elemental analyses, IR, UV/Vis absorption, and diffuse‐reflectance UV/Vis spectroscopy, TG analyses, XRPD, XPS and gel‐filtration chromatography. The electrochemical and electrocatalytical properties were also investigated. Crystal data for 1 , orthorhombic, Fddd, a = 28.156(6) Å, b = 36.003(7) Å, c = 42.126(8) Å, α = 90°, β = 90°, γ = 90°, Z = 8.  相似文献   

6.
Three novel polyoxometalate compounds consisting of Anderson‐type anions and trivalent lanthanide cations, [Ln(H2O)7Cr(OH)6Mo6O18]n·4nH2O (Ln = Ce 1 ; Sm 2 ; Eu 3 ), have been synthesized in aqueous solution and characterized by single crystal X‐ray diffraction, elemental analyses, IR spectra, and TG analyses. Single crystal X‐ray diffractions reveal that the structures of the 1:1 composite compound formed by the heteropolyanion [Cr(OH)6Mo6O18]3? as the building unit and the [Ln(H2O)7]3+ complex fragment as the linker, which exhibit a type of zig‐zag chain with alternating cations and anions through the Mo‐Ot′‐Ln‐Ot′‐Mo linkage in the crystal. The magnetic properties of 1 ? 3 have been studied by measuring their magnetic susceptibility over the temperature range of 2‐300 K. The UV‐vis spectra of 1 give the Mo‐O and CrIII‐O charge transfer transitions at 203 and 543 nm, respectively. In addition, the fluorescent characteristic transition of the Eu3+ ions in compound 3 is reported.  相似文献   

7.
An inorganic‐organic hybrid solid (H6/5bppy)5[P2W18O62]·4.5H2O ( 1 ) (bppy = 4‐(5‐(4‐bromophenyl)pyridin‐2‐yl)pyridine) was hydrothermally synthesized by using pre‐constructed Wells‐Dawson type salt α‐K6P2W18O62·15H2O as inorganic moiety. The crystal structure keeps integrated and steady under the interactions together of aryl packing, hydrogen bonding and halogen bonding. X‐ray single crystal structure analysis reveals that compound 1 contains cavities with the sizes of about 6 × 8Å, in which H2O molecules are captured. The hybrid was used as a solid bulk modifier to fabricate a three‐dimensional bulk‐modified carbon paste electrode ( 1 ‐CPE) by direct mixing. The electrochemical and electrocatalytic behavior of the 1 ‐CPE has been studied in detail. The results exhibit that the redox ability of the Wells‐Dawson polyanions can be maintained in the hybrid solid, which has a good electrocatalytic activity toward the reduction of bromate and hydrogen peroxide. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The 1 ‐CPE showed long‐term stability and excellent reproducibility of surface renewal.  相似文献   

8.
A new 15-membered-macrocyclic molecular entity, oxa-TriQuinoline (o-TQ), was designed and synthesized. In o-TQ, three oxygen atoms were joined onto three quinoline units at the 2- and 8-positions in a head-to-tail fashion by three-fold SNAr reactions, giving rise to the characteristic N3O3 aza-oxa-crown architecture. o-TQ can serve as a new tridentate nitrogen ligand to capture a CuI cation and adopt a bowl shape, before supramolecular complexation with corannulene and [12]cycloparaphenylene (CPP) occurs through π–π and CH–π interactions. In the presence of the CuI cation, the non-emissive o-TQ becomes a highly emissive material in the solid state, whereby the emission wavelengths depend on the ancillary ligand on the CuI cation. The o-TQ/CuI complex is able to promote carbene catalysis to provide a range of enamines with a gem-difluorinated terminus.  相似文献   

9.
Two new transition‐metal (TM) complex salts of the Wells‐Dawson polyanion: [Cu(2,2′‐bpy)3]2[Cu(2,2′‐bpy)2]2[P2W18O62] ( 1 ) and [2,2′‐bpy]8[Fe(2,2′‐bpy)3]8[P2W18O62]4·9H2O ( 2 ) (2,2′‐bpy = 2,2′‐bipyridine), have been synthesized under hydrothermal conditions by using pre‐prepared α‐K6P2W18O62·15H2O as a precursor. Crystal data for compound 1 : monoclinic, space group C2/c, a = 20.722(4) Å, b = 21.988(4) Å, c = 29.614(6) Å, β = 104.32(3)°, V = 13074(5) Å3, Z = 4; for compound 2 : triclinic, space group , a = 15.804(3) Å, b = 27.519(6) Å, c = 27.566(6) Å, α = 72.71(3)°, β = 89.94(3)°, γ = 89.90(3)°, V = 11447(5) Å3, Z = 1. Compounds 1 and 2 have been characterized by single‐crystal X‐ray diffraction, IR spectra, thermogravimetric analysis, XPS spectra and cyclic voltammetry. The two compounds were used as solid bulk modifiers to fabricate bulk‐modified carbon paste electrodes ( 1 ‐, 2 ‐CPE). The electrochemical behaviors of 1 ‐, 2 ‐CPE have been studied in detail. The redox behavior of the parent Wells‐Dawson type cluster was maintained completely in compounds 1 and 2 .  相似文献   

10.
The organic‐inorganic hybrid H5[Ag2(hyp)2]2[BW12O40] · 9H2O ( 1 ) (hpy = hypoxanthine), based on Keggin‐type polyoxometalate and hypoxanthine, was prepared by hydrothermal synthesis and characterized by single‐crystal and powder X‐ray diffraction, IR spectroscopy, elemental analysis, and thermogravimetry. The title compound has a two‐dimensional layer structure constructed by Keggin‐type [BW12O40]5– anion, silver, and the biomolecule hyp. In addition, compound 1 exhibited excellent stability and superior activity in the electro‐catalytic oxidation of glucose.  相似文献   

11.
In an effort to develop robust molecular sensitizers for solar fuel production, the electronic structure and photodynamics of transition‐metal‐substituted polyoxometalates (POMs), a novel class of compound in this context, was examined. Experimental and computational techniques including femtosecond (fs) transient absorption spectroscopy have been used to study the cobalt‐containing Keggin POMs, [CoIIW12O40]6? ( 1 a ), [CoIIIW12O40]5? ( 2 a ), [SiCoII(H2O)W11O39]6? ( 3 a ), and [SiCoIII(H2O)W11O39]5? ( 4 a ), finding the longest lived charge transfer excited state so far observed in a POM and elucidating the electronic structures and excited‐state dynamics of these compounds at an unprecedented level. All species exhibit a bi‐exponential decay in which early dynamic processes with time constants in the fs domain yield longer lived excited states which decay with time constants in the ps to ns domain. The initially formed states of 1 a and 3 a are considered to result from metal‐to‐polyoxometalate charge transfer (MPCT) from CoII to W, while the longer‐lived excited state of 1 a is tentatively assigned to a localized intermediate MPCT state. The excited state formed by the tetrahedral cobalt(II) centered heteropolyanion ( 1 a ) is far longer‐lived (τ=420 ps in H2O; τ=1700 ps in MeCN) than that of 3 a (τ=1.3 ps), in which the single CoII atom is located in a pseudo‐octahedral addendum site. Short‐lived states are observed for the two CoIII‐containing heteropolyanions 2 a (τ=4.4 ps) and 4 a (τ=6.3 ps) and assigned solely to O→CoIII charge transfer. The dramatically extended lifetime for 1 a versus 3 a is ascribed to a structural change permitted by the coordinatively flexible central site, weak orbital overlap of the central Co with the polytungstate framework, and putative transient valence trapping of the excited electron on a single W atom, a phenomenon not noted previously in POMs.  相似文献   

12.
A key reaction in the biological and material world is the controlled linking of simple (molecular) building blocks, a reaction with which one can create mesoscopic structures, which, for example, contain cavities and display specifically desired properties, but also compounds that exhibit typical solid-state structures. The best example in this context is the chemistry of host–guest interactions, which spans the entire range from three- and two-dimensional to one- and “zero-dimensional”, discrete host structures. Members of the class of multidimensional compounds have been classified as such for a long time, for example, clathrates and intercalation compounds. Thus far, however, there are no classifications for discrete inorganic host–guest compounds. The first systematic approach can be applied to novel polyoxometalates, a class of compounds which has only recently become known. Molecular recognition; tailor-made, molecular engineering; control of fragment linkage of spin organization and crystallization; cryptands and coronands as “cages” for cations, anions or anion–cation aggregates as sections of ionic lattices; anions within anions, receptors; host–guest interactions; complementarity, as well as the dialectic terms reduction and emergence are important terms and concepts of supramolecular inorganic chemistry. Of particular importance for future research is the comprehension of the mesoscopic area (molècular assemblies)—that between individual molecules and solids (“substances”)—which acts in the biological world as carrier of function and information and for which interesting material properties are expected. This area is accessible through certain variations of “controlled” self-organization processes, which can be demonstrated by using examples from the chemistry of polyoxometalates. The comprehension of the laws that rule the linking of simple polyhedra to give complex systems enables one to deal with numerous interdisciplinary areas of research: crystal physics and chemistry, heterogeneous catalysis, bioinorganic chemistry (biomineralization), and materials science. In addition, conservative self-organization processes, for example template-directed syntheses, are of importance for natural philosophy in the context of the question about the inherent properties of material systems.  相似文献   

13.
The complexation reaction between Zn2+, Pb2+, Cd2+ and Tl+ cations by 5,7‐diiodo‐8‐hydroxyquinoline (IQN) was studied in the Dimethylformamide /Acetonitril (DMF‐AN) binary system using square wave polarography technique. The stoichiometry and stability of the complexes were determined by monitoring the shifts in half‐wave or peak potential of the polarographic waves of metal ions against the ligand concentration. The stoichiometry of the complexes was found to be 1:1. The results obtained show that there is an inverse relationship between the formation constant of the complexes and the donor number of solvent base on the Guttmann donocity scale. In all cases the formation constants increased with increasing amounts of AN in these binary systems. The selectivity order for IQN complexes with the cations is Zn2+ > Pb2+ > Cd2+ > Tl+.  相似文献   

14.
15.
The new supramolecular compound [H2bpp][{Cu(Hbpy)2}{α‐HP2W18O62}]·4H2O ( 1 ) (bpy = 4,4′‐bipyridine, bpp = 1,3‐bis(4‐pyridyl)propane) was synthesized hydrothermally and characterized byelemental analysis, IR spectroscopy, thermogravimetric analysis and single‐crystal X‐ray diffraction. In compound 1 , the cationic fragment [Cu(Hbpy)2]+ connects to the Dawson anion through a coordinating Cu←O bond, and the copper atom is coordinated by another polyoxoanion through a weak covalent bond with a Cu1–O26 distance of 2.879(2) Å, forming a polymeric chain. The bpy ligand in [Cu(Hbpy)2]+ adopts a monodentate coordination mode, the other nitrogen atom of the bpy ligand is protonated. The protonated Hbpy+ acts as hydrogen‐bond donor and constructs a two‐dimensional double‐sheet supramolecular network involving the one‐dimensional chains through the hydrogen bonds. The H2bpp2+ ion connects twoα‐HP2W18O626– clusters from two supramolecular networks through hydrogen bonds and creates a three‐dimensional supramolecular architecture. The thermal decomposition of 1 happens over a wide temperature range (450–800 °C), which indicates that it might include complicated oxidation–reduction processes.  相似文献   

16.
A solution of deprotonated 1,3‐bis(4‐bromophenyl)triazene reacts with Hg(CH3COO)2 in methanol / tetrahydrofurane to give yellow crystalline needles of {HgII[NNN(PhBr)2]2}n, a triazenide complex polymer of HgII with metal‐η22‐arene π‐interactions, performed by coordinated single triazenide chains. The crystal structure of the new polymeric complex of HgII belongs to the monoclinic space group P21/n. The lattice of [HgII(BrPhNNNPhBr)2]n can be viewed as a one‐dimensional assembling of planar tectons [HgII(BrPhNNNPhBr)2] linked through metalocene alike HgII‐η22‐arene π‐interactions along the crystallographic b axis.  相似文献   

17.
Reactions of [SbIIIBr6]3– with Br2 in HBr in the presence of N‐substituted quinolinium or isoquinolinium cations result in new complexes of hexabromidoantimonates of SbV and their polybromide adducts: (N‐MeQuin)2{[SbBr6](Br3)} ( 1 ), (N‐MeIsoquin)2{[SbBr6](Br3)} ( 2 ), and (N‐EtQuin)[SbBr6] ( 3 ). Thermal stability was studied; estimated energies of supramolecular Br ··· Br interactions were calculated.  相似文献   

18.
19.
The reaction of aryl‐ and amino(dihydro)boranes with dibora[2]ferrocenophane 1 leads to the formation 1,3‐trans‐dihydrotriboranes by formal hydrogenation and insertion of a borylene unit into the B=B bond. The aryltriborane derivatives undergo reversible photoisomerization to the cis‐1,2‐μ‐H‐3‐hydrotriboranes, while hydride abstraction affords cationic triboranes, which represent the first doubly base‐stabilized B3H4+ analogues.  相似文献   

20.
The effect of cations in a reaction mixture for the preparation of the Preyssler‐Jeannin‐Pope type 30‐tungsto‐5‐phosphate [P5W30O110Na]14– is investigated. Reaction of phosphate and tungstate with a P/W ratio of ca. 3.9 in an acidic aqueous solution without cations selectively leads to the Dawson‐type 18‐tungsto‐2‐phosphate, [P2W18O62]6–. Amongst all the alkali cations, only Na+ allows formation of the Preyssler‐type polyanion [P5W30O110Na]14–, with an encapsulated Na+ ion, and the product yield can be improved by increasing Na+ amount. The presence of Li+ ions instead results in the Dawson‐type polyanion [P2W18O62]6–, whereas K+, Rb+, and Cs+ selectively result in the Keggin‐type polyanion [PW12O40]3–. An improved synthetic procedure for the Na+‐encapsulated Preyssler‐ion leading to a higher isolated yield is presented. Furthermore, addition of Ca2+ and Bi3+ compounds allows formation of the Ca2+‐ and Bi3+‐encapsulated Preyssler‐type polyanions, [P5W30O110Ca]13– and [P5W30O110Bi]12–, respectively. Furthermore, single‐crystal XRD structure of the Bi3+‐encapsulated Preyssler‐type polyanions, [P5W30O110Bi]12–, is presented for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号