首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider a generalisation of the classical Ramsey theory setting to a setting where each of the edges of the underlying host graph is coloured with a set of colours (instead of just one colour). We give bounds for monochromatic tree covers in this setting, both for an underlying complete graph, and an underlying complete bipartite graph. We also discuss a generalisation of Ramsey numbers to our setting and propose some other new directions.Our results for tree covers in complete graphs imply that a stronger version of Ryser’s conjecture holds for k-intersecting r-partite r-uniform hypergraphs: they have a transversal of size at most r?k. (Similar results have been obtained by Király et al., see below.) However, we also show that the bound r?k is not best possible in general.  相似文献   

2.
Upper bounds are found for the Ramsey function. We prove R(3, x) < cx2lnx and, for each k ? 3, R(k, x) < ckxk ? 1(ln x)k ? 2 asymptotically in x.  相似文献   

3.
Chvátal, Rödl, Szemerédi and Trotter [V. Chvátal, V. Rödl, E. Szemerédi and W.T. Trotter, The Ramsey number of a graph with a bounded maximum degree, J. Combinatorial Theory B 34 (1983), 239–243] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. In [O. Cooley, N. Fountoulakis, D. Kühn and D. Osthus, 3-uniform hypergraphs of bounded degree have linear Ramsey numbers, submitted] and [B. Nagle, S. Olsen, V. Rödl and M. Schacht, On the Ramsey number of sparse 3-graphs, preprint] the same result was proved for 3-uniform hypergraphs. In [O. Cooley, N. Fountoulakis, D. Kühn and D. Osthus, Embeddings and Ramsey numbers of sparse k-uniform hypergraphs, submitted] we extended this result to k-uniform hypergraphs for any integer k3. As in the 3-uniform case, the main new tool which we proved and used is an embedding lemma for k-uniform hypergraphs of bounded maximum degree into suitable k-uniform ‘quasi-random’ hypergraphs.  相似文献   

4.
5.
The book with n pages Bn is the graph consisting of n triangles sharing an edge. The book Ramsey number r(Bm,Bn) is the smallest integer r such that either Bm ? G or Bn ? G for every graph G of order r. We prove that there exists a positive constant c such that r(Bm,Bn) = 2n + 3 for all n ≥ cm. Our proof is based mainly on counting; we also use a result of Andrásfai, Erd?s, and Sós stating that triangle‐free graphs of order n and minimum degree greater than 2n/5 are bipartite. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

6.
Let denote the complete k‐uniform k‐partite hypergraph with classes of size t and the complete k‐uniform hypergraph of order s. One can show that the Ramsey number for and satisfies when t = so(1) as s. The main part of this paper gives an analogous result for induced Ramsey numbers: Let be an arbitrary k‐partite k‐uniform hypergraph with classes of size t and an arbitrary k‐graph of order s. We use the probabilistic method to show that the induced Ramsey number (i.e. the smallest n for which there exists a hypergraph such that any red/blue coloring of yields either an induced red copy of or an induced blue copy of ) satisfies . © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 48, 5–20, 2016  相似文献   

7.
For two graphs, G and H, an edge coloring of a complete graph is (G,H)-good if there is no monochromatic subgraph isomorphic to G and no rainbow subgraph isomorphic to H in this coloring. The set of numbers of colors used by (G,H)-good colorings of Kn is called a mixed Ramsey spectrum. This note addresses a fundamental question of whether the spectrum is an interval. It is shown that the answer is “yes” if G is not a star and H does not contain a pendant edge.  相似文献   

8.
For every ?>0 and every positive integers Δ and r, there exists C=C(?,Δ,r) such that the Ramsey number, R(H,H) of any r-uniform hypergraph H with maximum degree at most Δ is at most C|V(H)|1+?.  相似文献   

9.
The generalised Ramsey number R(G1, G2,..., Gk) is defined as the smallest integer n such that, if the edges of Kn, the complete graph on n vertices, are coloured using k colours C1, C2,..., Ck, then for some i(1≤ik) there is a subgraph Gi of Kn with all of its edges colour Ci. When G1=G2=...,Gk=G, we use the more compact notation Rk(G).The generalised Ramsey numbers Rk(G) are investigated for all graphs G having at most four vertices (and no isolates). This extends the work of Chvátal and Harary, who made this investigation in the case k=2.  相似文献   

10.
Let fr(n) represent the minimum number of complete r-partite r-graphs required to partition the edge set of the complete r-uniform hypergraph on n vertices. The Graham–Pollak theorem states that f2(n)=n?1. An upper bound of (1+o(1))n?r2? was known. Recently this was improved to 1415(1+o(1))n?r2? for even r4. A bound of [r2(1415)r4+o(1)](1+o(1))n?r2? was also proved recently. Let cr be the limit of fr(n)n?r2? as n. The smallest odd r for which cr<1 that was known was for r=295. In this note we improve this to c113<1 and also give better upper bounds for fr(n), for small values of even r.  相似文献   

11.
12.
The restricted (m,n;N)-online Ramsey game is a game played between two players, Builder and Painter. The game starts with N isolated vertices. Each turn Builder picks an edge to build and Painter chooses whether that edge is red or blue, and Builder aims to create a red Km or blue Kn in as few turns as possible. The restricted online Ramsey number r?(m,n;N) is the minimum number of turns that Builder needs to guarantee her win in the restricted (m,n;N)-online Ramsey game. We show that if N=r(n,n), r?(n,n;N)N2?Ω(NlogN),motivated by a question posed by Conlon, Fox, Grinshpun and He. The equivalent game played on infinitely many vertices is called the online Ramsey game. As almost all known Builder strategies in the online Ramsey game end up reducing to the restricted setting, we expect further progress on the restricted online Ramsey game to have applications in the general case.  相似文献   

13.
14.
Given a graph F, a hypergraph is a Berge- F if it can be obtained by expanding each edge in F to a hyperedge containing it. A hypergraph H is Berge-F-saturated if H does not contain a subhypergraph that is a Berge-F, but for any edge eE(H¯), H+e does. The k-uniform saturation number of Berge-F is the minimum number of edges in a k-uniform Berge-F-saturated hypergraph on n vertices. For k=2 this definition coincides with the classical definition of saturation for graphs. In this paper we study the saturation numbers for Berge triangles, paths, cycles, stars and matchings in k-uniform hypergraphs.  相似文献   

15.
If G1 and G2 are graphs and the Ramsey number r(G1, G2) = p, then the fewest number of G1 in G and G2 in ? (G complement) that occur in a graph G on p points is called the Ramsey multiplicity and denoted R(G1, G2). In [2, 3] the diagonal (i.e. G1 = G2) Ramsey multiplicities are derived for graphs on 3 and 4 points, with the exception of K4. In this note an upper bound is established for R(Ks, K1). Specifically, we show that R(K4, K4) ? 12.  相似文献   

16.
The Maslov index is a powerful tool for computing spectra of selfadjoint, elliptic boundary value problems. This is done by counting intersections of a fixed Lagrangian subspace, which designates the boundary conditions, with the set of Cauchy data for the differential operator. We apply this methodology to constrained eigenvalue problems, in which the operator is restricted to a (not necessarily invariant) subspace. The Maslov index is defined and used to compute the Morse index of the constrained operator. We then prove a constrained Morse index theorem, which says that the Morse index of the constrained problem equals the number of constrained conjugate points, counted with multiplicity, and give an application to the nonlinear Schrödinger equation.  相似文献   

17.
We obtain an intrinsic version of a Bismut type formula for the Hessian of heat semigroups, resp. harmonic functions, by computing second order directional derivatives of families of martingales, along with filtering of redundant noise. As applications we provide a Hessian estimate in the general case as well as a slightly improved one in the radially symmetric situation. To cite this article: M. Arnaudon et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

18.
Yi Zhang  Mei Lu 《Discrete Mathematics》2019,342(6):1731-1737
A matching in a 3-uniform hypergraph is a set of pairwise disjoint edges. We use E3(2d?1,n?2d+1) to denote the 3-uniform hypergraph whose vertex set can be partitioned into two vertex classes V1 and V2 of size 2d?1 and n?2d+1, respectively, and whose edge set consists of all the triples containing at least two vertices of V1. Let H be a 3-uniform hypergraph of order n13d with no isolated vertex and deg(u)+deg(v)>2(n?12?n?d2) for any two adjacent vertices u,vV(H). In this paper, we show that H contains a matching of size d if and only if H is not a subgraph of E3(2d?1,n?2d+1). This result improves our previous one in Zhang and Lu (2018).  相似文献   

19.
Some recurrence inequalities for Ramsey numbers for triples are established by means of explicit constructions.  相似文献   

20.
An elementary setting of the classical Ramsey property is given, which leads to simple proofs of the relevant theorems of Galvin-Prikry and Silver.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号