首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Charge-shift bonds (CSBs) constitute a new class of bonds different than covalent/polar-covalent and ionic bonds. Bonding in CSBs does not arise from either the covalent or the ionic structures of the bond, but rather from the resonance interaction between the structures. This Essay describes the reasons why the CSB family was overlooked by valence-bond pioneers and then demonstrates that the unique status of CSBs is not theory-dependent. Thus, valence bond (VB), molecular orbital (MO), and energy decomposition analysis (EDA), as well as a variety of electron density theories all show the distinction of CSBs vis-à-vis covalent and ionic bonds. Furthermore, the covalent–ionic resonance energy can be quantified from experiment, and hence has the same essential status as resonance energies of organic molecules, e.g., benzene. The Essay ends by arguing that CSBs are a distinct family of bonding, with a potential to bring about a Renaissance in the mental map of the chemical bond, and to contribute to productive chemical diversity.  相似文献   

2.
What is the nature of the C? C bond? Valence bond and electron density computations of 16 C? C bonds show two families of bonds that flesh out as a phase diagram. One family, involving ethane, cyclopropane and so forth, is typified by covalent C? C bonding wherein covalent spin‐pairing accounts for most of the bond energy. The second family includes the inverted bridgehead bonds of small propellanes, where the bond is neither covalent nor ionic, but owes its existence to the resonance stabilization between the respective structures; hence a charge‐shift (CS) bond. The dual family also emerges from calculated and experimental electron density properties. Covalent C? C bonds are characterized by negative Laplacians of the density, whereas CS‐bonds display small or positive Laplacians. The positive Laplacian defines a region suffering from neighbouring repulsive interactions, which is precisely the case in the inverted bonding region. Such regions are rich in kinetic energy, and indeed the energy‐density analysis reveals that CS‐bonds are richer in kinetic energy than the covalent C? C bonds. The large covalent–ionic resonance energy is precisely the mechanism that lowers the kinetic energy in the bonding region and restores equilibrium bonding. Thus, different degrees of repulsive strain create two bonding families of the same chemical bond made from a single atomic constituent. It is further shown that the idea of repulsive strain is portable and can predict the properties of propellanes of various sizes and different wing substituents. Experimentally (M. Messerschmidt, S. Scheins, L. Bruberth, M. Patzel, G. Szeimies, C. Paulman, P. Luger, Angew. Chem. 2005 , 117, 3993–3997; Angew. Chem. Int. Ed. 2005 , 44, 3925–3928), the C? C bond families are beautifully represented in [1.1.1]propellane, where the inverted C? C is a CS‐bond, while the wings are made from covalent C? C bonds. What other manifestations can we expect from CS‐bonds? Answers from experiment have the potential of recharting the mental map of chemical bonding.  相似文献   

3.
This article analyzes the nature of the chemical bond in coinage metal halides using high-level ab initio Valence Bond (VB) theory. It is shown that these bonds display a large Charge-Shift Bonding character, which is traced back to the large Pauli pressure arising from the interaction between the bond pair with the filled semicore d shell of the metal. The gold-halide bonds turn out to be pure Charge-Shift Bonds (CSBs), while the copper halides are polar-covalent bonds and silver halides borderline cases. Among the different halogens, the largest CSB character is found for fluorine, which experiences the largest Pauli pressure from its σ lone pair. Additionally, all these bonds display a secondary but non-negligible π bonding character, which is also quantified in the VB calculations.  相似文献   

4.
Natural orbital functional theory (NOFT) is used for the first time in the analysis of different types of chemical bonds. Concretely, the Piris natural orbital functional PNOF5 is used. It provides a localization scheme that yields an orbital picture which agrees very well with the empirical valence shell electron pair repulsion theory (VSEPR) and Bent’s rule, as well as with other theoretical pictures provided by valence bond (VB) or linear combination of atomic orbitals–molecular orbital (LCAO‐MO) methods. In this context, PNOF5 provides a novel tool for chemical bond analysis. In this work, PNOF5 is applied to selected molecules that have ionic, polar covalent, covalent, multiple (σ and π), 3c–2e, and 3c–4e bonds.  相似文献   

5.
6.
Covalent, ionic, or something new? A new interpretation of the topology of the electron density at the bond critical point is proposed to characterize covalent, ionic, and charge‐shift bonding from the density point of view (see figure). The topological properties of the density representation confirm the reality of charge‐shift bonds, in which the covalent contribution is weak or repulsive, and most of the bonding is due to the covalent–ionic resonance energy.

  相似文献   


7.
This paper shows that the differences between the barriers of the halogen exchange reactions, in the H + XH systems, and the hydrogen abstraction reactions, in the X + HX systems (X = F, Cl, Br), measure the covalent-ionic resonance energies of the corresponding X-H bonds. These processes are investigated using CCSD(T) calculations as well as the breathing-orbital valence bond (BOVB) method. Thus, the VB analysis shows that (i) at the level of covalent structures the barriers are the same for the two series and (ii) the higher barriers for halogen exchange processes originate solely from the less efficient mixing of the ionic structures into the respective covalent structures. The barrier differences, in the HXH vs XHX series, which decrease as X is varied from F to I, can be estimated as one-quarter of the covalent-ionic resonance energy of the H-X bond. The largest difference (22 kcal/mol) is calculated for X = F in accord with the finding that the H-F bond possesses the largest covalent-ionic resonance energy, 87 kcal/mol, which constitutes the major part of the bonding energy. The H-F bond belongs to the class of "charge-shift" bonds (Shaik, S.; Danovich, D.; Silvi, B.; Lauvergnat, D. L.; Hiberty, P. C. Chem. Eur. J. 2005, 21, 6358), which are all typified by dominant covalent-ionic resonance energies. Since the barrier difference between the two series is an experimental measure of the resonance energy quantity, in the particular case of X = F, the unusually high barrier for the fluorine exchange reaction emerges as an experimental manifestation of charge-shift bonding.  相似文献   

8.
Ever since Lewis depicted the triple bond for acetylene, triple bonding has been considered as the highest limit of multiple bonding for main elements. Here we show that C2 is bonded by a quadruple bond that can be distinctly characterized by valence‐bond (VB) calculations. We demonstrate that the quadruply‐bonded structure determines the key observables of the molecule, and accounts by itself for about 90 % of the molecule's bond dissociation energy, and for its bond lengths and its force constant. The quadruply‐bonded structure is made of two strong π bonds, one strong σ bond and a weaker fourth σ‐type bond, the bond strength of which is estimated as 17–21 kcal mol?1. Alternative VB structures with double bonds; either two π bonds or one π bond and one σ bond lie at 129.5 and 106.1 kcal mol?1, respectively, above the quadruply‐bonded structure, and they collapse to the latter structure given freedom to improve their double bonding by dative σ bonding. The usefulness of the quadruply‐bonded model is underscored by “predicting” the properties of the 3 state. C2’s very high reactivity is rooted in its fourth weak bond. Thus, carbon and first‐row main elements are open to quadruple bonding!  相似文献   

9.
作者曾系统研究[Ln(CCl_3COO)_3·dipy·H_2O]2配合物的合成和性质,并测定了[La(CCl_3COO)_3·dipy·H_2O]_2的晶体结构(待发表)。本文用量子化学INDO方法探讨镧配合物的电子结构和化学键。程序和参数见文献[1]。分子结构采用晶体结构数据。计算模型取配合物的一半,用HCOO~-代CCl_3COO~-,这样的近似对结果可能有影响,但在讨论羧基与La配位以及双聚机理时使图象更为简明清晰。分子骨架结构见图1,其中HCO_1O_5~-的一个氧  相似文献   

10.
Bonded or not bonded? An ab initio valence bond study of [1.1.1]propellane shows that the two bridgehead carbons are linked by a strong and direct σ bond that is neither classically covalent nor classically ionic, but rather a charge‐shift bond, in which the covalent–ionic resonance energy plays the major role. As such, the central bond of [1.1.1]propellane closely resembles the single bond of difluorine.

  相似文献   


11.
The recently developed (Song, L.; Wu, W.; Zhang, Q.; Shaik, S. J. Phys. Chem. A 2004, 108, 6017-6024) valence bond method coupled to a polarized continuum model (VBPCM) is used to address the long standing conundrum of the heterolytic dissociation of the C-Cl and Si-Cl bonds, respectively, in tertiary-butyl chloride and trimethylsilyl chloride in condensed phases. The method is used here to compare the bond dissociation in the gas phase and in aqueous solution. In addition to the ground state reaction profile, VB theory also provides the energies of the purely covalent and purely ionic VB structures as a function of the reaction coordinate. Accordingly, the C-Cl and Si-Cl bonds are shown to be of different natures. In the gas phase, the resonance energy arising from covalent-ionic mixing at equilibrium geometry amounts to 42 kcal/mol for tertiary-butyl chloride, whereas the same quantity for trimethylsilyl chloride is significantly higher at 62 kcal/mol. With such a high value, the root cause of the Si-Cl bonding is the covalent-ionic resonance energy, and this bond belongs to the category of charge-shift bonds (Shaik, S.; Danovich, D.; Silvi, B.; Lauvergnat, D.; Hiberty, P. C. Chem.- Eur. J. 2005, 11, 6358). This difference between the C-Cl and Si-Cl bonds carries over to the solvated phase and impacts the heterolytic cleavages of the two bonds. For both molecules, solvation lowers the ionic curve below the covalent one, and hence the bond dissociation in the solvent generates the two ions, Me3E+ Cl- (E = C, Si). In both cases, the root cause of the barrier is the loss of the covalent-ionic resonance energy. In the heterolysis reaction of Si-Cl, the covalent-ionic resonance energy remains large and fully contributes to the dissociation energy, thereby leading to a high barrier for heterolytic cleavage, and thus prohibiting the generation of ions. By contrast, the covalent-ionic resonance energy is smaller for the C-Cl bond and only partially contributes to the barrier for heterolysis, which is consequently small, leading readily to ions that are commonly observed in the classical SN1 mechanism. Thus, the reluctance of R3Si-X molecules to undergo heterolysis in condensed phases and more generally the rarity of free silicenium ions under these conditions are experimental manifestations of the charge-shift character of the Si-Cl bond.  相似文献   

12.
作者曾系统研究[Ln(CCl3COO)3·dipy·H2O]2配合物的合成和性质,并测定了[La(CCl3COO)3·dipy·H2O]2的晶体结构(待发表)。  相似文献   

13.
价键理论新进展   总被引:1,自引:0,他引:1  
概要介绍了现代价键理论的几个主要方法,并讨论了它们各自的特点及其发展现状,并重点介绍了键表方法的基本理论、计算程序及一些应用。  相似文献   

14.
15.
以抚顺、茂名油页岩干酪根13C NMR、XPS与元素分析数据为基础,构建了油页岩干酪根分子结构模型,同时以化学键为标准对抚顺、茂名干酪根结构模型进行了修改,构建的干酪根结构模型与实验化学键浓度匹配良好,从化学键角度验证了模型的准确性与合理性。以自建及文献中九个不同变质程度的油页岩干酪根结构模型为基础,研究了油页岩干酪根变质程度与各类化学键浓度及能量密度关系。结果表明,随油页岩干酪根变质程度的提高,芳香碳分别与芳香碳、脂肪碳、氢原子等原子形成的化学键浓度升高,脂肪碳与脂肪碳、氢原子等原子形成的化学键浓度下降,其中,芳香碳之间、脂肪碳与氢原子之间的化学键浓度变化最明显。组成油页岩干酪根势能的价电子能密度及非键能密度随干酪根变质程度的提高总体上呈现上升趋势,成为组成油页岩干酪根稳定的化学能。  相似文献   

16.
The electronic structure and chemical bonding of the title comp-lexes have been studied by an unrestricted INDO program made applicable forthe lanthanoid compounds.The results indicated:(1)In coordinated bonds O-Lnand N-Ln,5d orbitals of Ln have large contribution in all valence orbitalsof Ln and 4f orbitals have very small contribution.(2)The covalent chara-cter and ionic character are almost equal in the chemical bond which iscomparatively weak between phen,C_2H_5OH and Ln are mainly ionic with somecovalent character.  相似文献   

17.
The recent Hartree-Fock (HF) difference approach to the chemical valence indices (ionic and covalent), formulated in the framework of the pair-density matrix, is implemented within the Kohn-Sham (KS) density functional theory (DFT). The valence numbers are quadratic in terms of displacements of the molecular spin-resolved charge-and-bond-order (CBO) matrix elements, relative to values in the separated atoms limit (SAL). It is shown that the global valence represents a generalized “distance” quantity measuring a degree of similarity between the two CBO matrices: the molecular and SAL. Numerical values for typical molecules exhibiting single and multiple bonds demonstrate that the KS orbitals give rise to these new bond valences in good agreement with both chemical and HF predictions. This KS bond multiplicity analysis is applied to the chemisorption system including the allyl radical and a model surface cluster of molybdenum oxide. It is concluded that the quadratic valence analysis represents a valuable procedure for extracting useful chemical information from standard DFT calculations. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
19.
20.
When R is sufficiently electron withdrawing, the fluorine in the R?F molecules could interact with electron donors (e.g., ammonia) and form a noncovalent bond (F ??? N). Although these interactions are usually categorized as halogen bonding, our studies show that there are fundamental differences between these interactions and halogen bonds. Although the anisotropic distribution of electronic charge around a halogen is responsible for halogen bond formations, the electronic charge around the fluorine in these molecules is spherical. According to source function analysis, F is the sink of electron density at the F ??? N BCP, whereas other halogens are the source. In contrast to halogen bonds, the F ??? N interactions cannot be regarded as lump–hole interactions; there is no hole in the valence shell charge concentration (VSCC) of fluorine. Although the quadruple moment of Cl and Br is mainly responsible for the existence of σ‐holes, it is negligibly small in the fluorine. Here, the atomic dipole moment of F plays a stabilizing role in the formation of F ??? N bonds. Interacting quantum atoms (IQA) analysis indicates that the interaction between halogen and nitrogen in the halogen bonds is attractive, whereas it is repulsive in the F ??? N interactions. Virial‐based atomic energies show that the fluorine, in contrast to Cl and Br, stabilize upon complex formation. According to these differences, it seems that the F ??? N interactions should be referred to as “fluorine bond” instead of halogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号