首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We applied a new technique for quantitative linear range shift using in‐source collision‐induced dissociation (CID) to complex biological fluids to demonstrate its utility. The technique was used in a simultaneous quantitative determination method of 5‐fluorouracil (5‐FU), an anticancer drug for various solid tumors, and its metabolites in human plasma by liquid chromatography–electrospray ionization–tandem mass spectrometry (LC/ESI‐MS/MS). To control adverse effects after administration of 5‐FU, it is important to monitor the plasma concentration of 5‐FU and its metabolites; however, no simultaneous determination method has yet been reported because of vastly different physical and chemical properties of compounds. We developed a new analytical method for simultaneously determining 5‐FU and its metabolites in human plasma by LC/ESI‐MS/MS coupled with the technique for quantitative linear range shift using in‐source CID. Hydrophilic interaction liquid chromatography using a stationary phase with zwitterionic functional groups, phosphorylcholine, was suitable for separation of 5‐FU from its nucleoside and interfering endogenous materials. The addition of glycerin into acetonitrile‐rich eluent after LC separation improved the ESI‐MS response of high polar analytes. Based on the validation results, linear range shifts by in‐source CID is the reliable technique even with complex biological samples such as plasma. Copyright © 2016 John Wiley & Sons Ltd.  相似文献   

2.
A method was developed and validated to quantify abiraterone in human plasma. During assay development, several analytical challenges were encountered: limited stability in patient samples, adsorption to glass, coelution with metabolites and carry‐over issues. Limited stability (2 h) was found for abiraterone in fresh plasma as well as whole blood at ambient temperature. When kept at 2–8°C, abiraterone in plasma was stable for 24 h and in whole blood for 8 h. Adsorption of abiraterone to glass materials was addressed by using polypropylene throughout the method. Carry‐over was reduced to acceptable limits by incorporating a third mobile phase into the gradient. The chromatographic separation of abiraterone with its multiple metabolites was addressed by using a longer analytical column and adjusting the gradient. Abiraterone was extracted by protein precipitation, separated on a C18 column with gradient elution and analyzed with tandem quadrupole mass spectrometry in positive ion mode. A stable deuterated isotope was used as the internal standard. The assay ranges from 1 to 500 ng/mL. Within‐ and‐between‐day precisions and accuracies were below 13.4% and within 95–102%. This bioanalytical method was successfully validated and applied to determine plasma concentrations of abiraterone in clinical studies and in regular patient care for patients with metastatic castration‐resistant prostate cancer.  相似文献   

3.
A liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method was developed and validated for the determination of GDC‐0152 in human plasma to support clinical development. The method consisted of a solid‐phase extraction for sample preparation and LC‐MS/MS analysis in the positive ion mode using TurboIonSprayTM for analysis. d7‐GDC‐0152 was used as the internal standard. A linear regression (weighted 1/concentration2) was used to fit calibration curves over the concentration range of 0.02–10.0 ng/mL for GDC‐0152. There were no endogenous interference components in the blank human plasma tested. The accuracy at the lower limit of quantitation was 99.3% with a precision (%CV) of 13.9%. For quality control samples at 0.0600, 2.00 and 8.00 ng/mL, the between‐run %CV was ≤8.64. Between‐run percentage accuracy ranged from 98.2 to 99.6%. GDC‐0152 was stable in human plasma for 363 days at ?20°C and for 659 days at ?70°C storage. GDC‐0152 was stable in human plasma at room temperature for up to 25 h and through three freeze–thaw cycles. In whole blood, GDC‐0152 was stable for 12 h at 4°C and at ambient temperature. This validated LC‐MS/MS method for determination of GDC‐0152 was used to support clinical studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A simple, rapid and sensitive method for quantification of atomoxetine by liquid chromatography–tandem mass spectrometry (LC‐MS/MS) was developed. This assay represents the first LC‐MS/MS quantification method for atomoxetine utilizing electrospray ionization. Deuterated atomoxetine (d3‐atomoxetine) was adopted as the internal standard. Direct protein precipitation was utilized for sample preparation. This method was validated for both human plasma and in vitro cellular samples. The lower limit of quantification was 3 ng/mL and 10 nm for human plasma and cellular samples, respectively. The calibration curves were linear within the ranges of 3–900 ng/mL and 10 nm to 10 µm for human plasma and cellular samples, respectively (r2 > 0.999). The intra‐ and inter‐day assay accuracy and precision were evaluated using quality control samples at three different concentrations in both human plasma and cellular lysate. Sample run stability, assay selectivity, matrix effect and recovery were also successfully demonstrated. The present assay is superior to previously published LC‐MS and LC‐MS/MS methods in terms of sensitivity or the simplicity of sample preparation. This assay is applicable to the analysis of atomoxetine in both human plasma and in vitro cellular samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Gemfibrozil, a fibric acid hypolipidemic agent, is increasingly being used in clinical drug–drug interaction studies as an inhibitor of drug metabolizing enzymes and drug transporters. The validation of a fast, accurate and precise LC/MS method is described for the quantitative determination of gemfibrozil in an EDTA‐anticoagulated human plasma matrix. Briefly, gemfibrozil was extracted from human plasma by an acetonitrile protein precipitation method. The assay was reproducible with intra‐assay precision between 1.6 and 10.7%, and inter‐assay precision ranging from 4.4 to 7.8%. The assay also showed good accuracy, with intra‐assay concentrations within 85.6–108.7% of the expected value, and inter‐assay concentrations within 89.4–104.0% of the expected value. The linear concentration range was between 0.5 and 50 µg/mL with a lower limit of quantitation of 0.5 µg/mL when 125 µL of plasma were extracted. This LC/MS method yielded a quick, simple and reliable protocol for determining gemfibrozil concentrations in plasma and is applicable to clinical pharmacokinetic studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A simple and sensitive liquid chromatography–electrospray ionization–tandem mass spectrometry (LC‐ESI‐MS/MS) technique was developed and validated for the determination of sibutramine and its N‐desmethyl metabolites (M1 and M2) in human plasma. After extraction with methyl t‐butyl ether, chromatographic separation of analytes in human plasma was performed using a reverse‐phase Luna C18 column with a mobile phase of acetonitrile–10 mm ammonium formate buffer (50:50, v/v) and quantified by ESI‐MS/MS detection in positive ion mode. The flow rate of the mobile phase was 200 μL/min and the retention times of sibutramine, M1, M2 and internal standard (chlorpheniramine) were 1.5, 1.4, 1.3 and 0.9 min, respectively. The calibration curves were linear over the range 0.05–20 ng/mL, for sibutramine, M1 and M2. The lower limit of quantification was 0.05 ng/mL using 500 μL of human plasma. The mean accuracy and the precision in the intra‐ and inter‐day validation for sibutramine, M1 and M2 were acceptable. This LC‐MS/MS method showed improved sensitivity and a short run time for the quantification of sibutramine and its two active metabolites in plasma. The validated method was successfully applied to a pharmacokinetic study in human. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A liquid chromatography–tandem mass spectrometric (LC/MS/MS) method was developed for the determination of an atypical antipsychotic drug, lurasidone, in rat plasma. The method involves the addition of acetonitrile and ziprasidone (internal standard) solution to plasma samples, followed by centrifugation. An aliquot of the supernatant was diluted with water and directly injected into the LC/MS/MS system. The separations were performed on a column packed with octadecylsilica (5 μm, 2.0 × 50 mm) with 0.1% formic acid and 0.1% formic acid in acetonitrile as mobile phase and the detection was performed using tandem mass spectrometry by multiple‐reaction monitoring via an electrospray ionization source. The standard curve was linear (r = 0.9982) over the concentration range 0.002–1 μg/mL. The intra‐ and inter‐assay precisions were 1.7 and 8.6%, respectively. The accuracy range was from 90.3 to 101.8%. The lower limit of quantification was 2.0 ng/mL using 50 μL of rat plasma sample. The developed analytical method was successfully applied to the pharmacokinetic study of lurasidone in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Cases of poisoning by p‐phenylenediamine (PPD) are detected sporadically. Recently an article on the development and validation of an LC–MS/MS method for the detection of PPD and its metabolites, N‐acetyl‐p‐phenylenediamine (MAPPD) and N,N‐diacetyl‐p‐phenylenediamine (DAPPD) in blood was published. In the current study this method for detection of these compounds was validated and applied to urine samples. The analytes were extracted from urine samples with methylene chloride and ammonium hydroxide as alkaline medium. Detection was performed by LC–MS/MS using electrospray positive ionization under multiple reaction‐monitoring mode. Calibration curves were linear in the range 5–2000 ng/mL for all analytes. Intra‐ and inter‐assay imprecisions were within 1.58–9.52 and 5.43–9.45%, respectively, for PPD, MAPPD and DAPPD. Inter‐assay accuracies were within ?7.43 and 7.36 for all compounds. The lower limit of quantification was 5 ng/mL for all analytes. The method, which complies with the validation criteria, was successfully applied to the analysis of PPD, MAPPD and DAPPD in human urine samples collected from clinical and postmortem cases.  相似文献   

9.
This report details a method using liquid chromatography–tandem mass spectrometry (LC‐MS/MS) that allows one to determine the concentration of an atypical anticancer drug, enzalutamide, in rat plasma. Specifically, this method involves the addition of an acetonitrile and bicalutamide (internal standard) solution to plasma samples. Following centrifugation of this mixture, an aliquot of the supernatant was directly injected into the LC‐MS/MS system. Separation was achieved using a column packed with octadecylsilica (5 µm, 2.1 × 50 mm) with 10 mM ammonium acetate in acetonitrile as the mobile phase; detection was accomplished using MS/MS by multiple‐reaction monitoring via an electrospray ionization source. This method demonstrated a linear standard curve (r = 0.997) over a concentration range of 0.001–1 µg/mL, as well as an intra‐ and inter‐assay precision of 2.7 and 5.1%, respectively, and an accuracy range from 100.8 to 105.6%. The lower limit of quantification was 1.0 ng/mL in 50 μL of rat plasma sample. We also demonstrated that this analytical method could be successfully applied to the pharmacokinetic study of enzalutamide in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid, simple and sensitive LC–MS/MS method was established and validated for simultaneous quantification of ticagrelor and its active metabolite AR‐C124910XX in human plasma. After plasma samples were deproteinized with acetonitrile, the post‐treatment samples were chromatographed on a Dikma C18 column interfaced with a triple quadrupole tandem mass spectrometer. Electrospray negative ionization mode and multiple reaction monitoring were adopted to assay ticagrelor and AR‐C124910XX. Acetonitrile and 5 mΜ ammonium acetate was used as the mobile phase with a gradient elution at a flow rate of 0.5 mL/min. The method was linear in the range of 0.781–800 ng/mL for both ticagrelor and AR‐C124910XX with a correlation coefficient ≥0.994. The intra‐ and inter‐day precisions were within 12.61% in terms of relative standard deviation and the accuracy was within ±7.88% in terms of relative error. The LC–MS/MS method was fully validated for its sensitivity, selectivity, stability, matrix effect and recovery. This convenient and specific LC–MS/MS method was successfully applied to the pharmacokinetic study of ticagrelor and AR‐C124910XX in healthy volunteers after an oral dose of 90 mg ticagrelor.  相似文献   

11.
This report describes the development and validation of an LC‐MS/MS method for the quantitative determination of glyburide (GLB), its five metabolites (M1, M2a, M2b, M3 and M4) and metformin (MET) in plasma and urine of pregnant patients under treatment with a combination of the two medications. The extraction recovery of the analytes from plasma samples was 87–99%, and that from urine samples was 85–95%. The differences in retention times among the analytes and the wide range of the concentrations of the medications and their metabolites in plasma and urine patient samples required the development of three LC methods. The lower limit of quantitation (LLOQ) of the analytes in plasma samples was as follows: GLB, 1.02 ng/mL; its five metabolites, 0.100–0.113 ng/mL; and MET, 4.95 ng/mL. The LLOQ in urine samples was 0.0594 ng/mL for GLB, 0.984–1.02 ng/mL for its five metabolites and 30.0 µg/mL for MET. The relative deviation of this method was <14% for intra‐day and inter‐day assays in plasma and urine samples, and the accuracy was 86–114% in plasma, and 94–105% in urine. The method described in this report was successfully utilized for determining the concentrations of the two medications in patient plasma and urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
We present a simple and robust LC–MS/MS assay for the simultaneous quantitation of an antibody cocktail of trastuzumab and pertuzumab in monkey serum. The LC–MS/MS method saved costs, decreased the analysis time, and reduced quantitative times relative to the traditional ligand-binding assays. The serum samples were digested with trypsin at 50°C for 60 min after methanol precipitation, ammonium bicarbonate denaturation, dithiothreitol reduction, and iodoacetamide alkylation. The tryptic peptides were chromatographically separated using a C18 column (2.1 × 50 mm, 2.6 μm) with mobile phases of 0.1% formic acid in water and acetonitrile. The other monoclonal antibody, infliximab, was used as internal standards to minimize the variability during sample processing and detection. A unique peptide for each monoclonal antibody was simultaneously quantified using LC–MS/MS in the multiple reaction monitoring mode. Calibration curves were linear from 2.0 to 400 μg/mL. The intra- and inter-assay precision (%CV) was within 8.9 and 7.4% (except 10.4 and 15.1% for lower limit of quantitation), respectively, and the accuracy (%Dev) was within ±13.1%. The other validation parameters were evaluated, and all results met the acceptance criteria of the international guiding principles. Finally, the method was successfully applied to a pharmacokinetics study after a single-dose intravenous drip administration to cynomolgus monkeys.  相似文献   

13.
A rapid, specific and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed for the determination of penciclovir in human plasma. The method involved simple, one‐step SPE procedure coupled with a C18, 75 × 4.mm, 3µm column with a flow‐rate of 0.5 mL/min, and acyclovir was used as the internal standard. The Quattro Micro mass spectrometry was operated under the multiple reaction‐monitoring mode using the electrospray ionization technique. Using 250 µL plasma, the methods were validated over the concentration range 52.555–6626.181 ng/mL, with a lower limit of quantification of 52.55 ng/mL. The intra‐ and inter‐day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a clinical pharmacokinetic study in human volunteers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In the present study, we report the application of LC‐MS based on two different LC‐MS systems to mycotoxin analysis. The mycotoxins were extracted with an ACN/water/acetic acid mixture and directly injected into a LC‐MS/MS system without any dilution procedure. First, a sensitive and reliable HPLC‐ESI‐MS/MS method using selected reaction monitoring on a triple quadrupole mass spectrometer (TSQ Quantum Ultra AM) has been developed for determining 32 mycotoxins in crude extracts of wheat and maize. This method was operated both in positive and in negative ionization modes in two separate chromatographic runs. The method was validated by studies of spiked recoveries, linearity, matrix effect, intra‐assay precision and sensitivity. Further, we have developed and evaluated a method based on accurate mass measurements of extracted target ions in full scan mode using micro‐LC‐LTQ‐Orbitrap as a tool for fast quantitative analysis. Both instruments exhibited very high sensitivity and repeatability in positive ionization mode. Coupling of micro‐LC to Orbitrap technology was not applicable to the negatively ionizable compounds. The LC triple quadrupole MS method has proved to be stable in quantitation, as it is with respect to the matrix effects of grain samples.  相似文献   

15.
A simple plasma extraction method coupled with liquid chromatography–tandem mass spectrometry (LC/MS/MS) detection was developed and validated for the analysis of endogenous mevalonic acid (MVA), a biomarker indicative of the rate of cholesterol biosynthesis, in human plasma samples. The analyte was extracted from the plasma matrix using a straightforward liquid–liquid sample preparation procedure. The extract supernatants were evaporated, reconstituted in aqueous solvent and injected into the LC/MS/MS system without further processing. The chromatographic separation was achieved on a reverse‐phase high‐performance liquid chromatography column. The accuracy and precision of the method was determined over the concentration range 0.25–25 ng/mL MVA from human plasma extracts in three validation batch runs. Inter‐assay precision (%CV) and accuracy (%RE) of the quality control samples were ≤7.00% (at lower limit quality control) and ≤6.10%, respectively. The sensitivity and throughput of this assay was significantly improved relative to previously published methods, resulting in smaller sample requirements and shorter analysis time. Assay results from a clinical study following the oral administration of an exploratory statin demonstrate that this procedure could potentially be used in the investigation of therapies associated with hypercholesterolemia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive and specific method based on liquid chromatography‐tandem mass spectrometry using electrospray ionization (LC‐ESI‐MS/MS) has been developed for the determination of Schisandrin and Schisandrin B in rat plasma. A 100 μL plasma sample was extracted by methyl tert‐butyl ether after spiking the samples with nimodipine (internal standard) and performed on an XTerra®MS‐C18 column (150 mm × 2.1 mm, 3.5 μm) with the mobile phase of acetonitrile–water–formic acid (80:20:0.2, v/v) at a flow rate of 0.2 mL/min in a run time of 8.5 min. The lower limit of quantification of the method was 40 ng/mL for Schisandrin and 20 ng/mL for Schisandrin B. The method showed reproducibility with intra‐day and inter‐day precision of less than 13.8% RSD, as well as accuracy, with inter‐ and intra‐assay accuracies between 93.5 and 107.2%. Finally, the LC‐ESI‐MS/MS method was successfully applied to study the pharmacokinetics of Schisandrin and Schisandrin B in rats after administration of Wurenchun commercial formulations to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
LC‐MS/MS is currently the most selective and efficient tool for the quantitative analysis of drugs and metabolites in the pharmaceutical industry and in clinical assays. However, phase II metabolites sometimes negatively affect the selectivity and efficiency of the LC‐MS/MS method, especially for the metabolites that possess similar physicochemical characteristics and generate the same precursor ions as their parent compounds due to the in‐source collision‐induced dissociation during the ionization process. This paper proposes some strategies for examining co‐eluting metabolites existing in real samples, and further assuring whether these metabolites could affect the selectivity and accuracy of the analytical methods. Strategies using precursor‐ion scans and product‐ion scans were applied in this study. An example drug, namely, caffeic acid phenethyl ester, which can generate many endogenous phase II metabolites, was selected to conduct this work. These metabolites, generated during the in vivo metabolic processes, can be in‐source‐dissociated to the precursor ions of their parent compounds. If these metabolites are not separated from their parent compounds, the quantification of the target analytes (parent compounds) would be influenced. Some metabolites were eluted closely to caffeic acid phenethyl ester on LC columns, although long columns and relatively long elution programs were used. The strategies can be utilized in quantitative methodologies that apply LC‐MS/MS to assure the performance of selectivity, thus enhancing the reliability of the experimental data.  相似文献   

18.
Tiopronin (TP) is a synthetic thiol compound without chromophore. By optimizing the chromatographic conditions and sample preparation processes, an improved LC‐MS/MS analytical method without derivatization has been developed and validated to determine TP concentrations in human plasma. After reduction with 1,4‐dithiothreitol, plasma samples were deproteinized with 10% perchloric acid. The post‐treatment samples were analyzed on a C8 column interfaced with a triple quadrupole tandem mass spectrometer in negative electrospray ionization mode. Methanol–5 mmol/L ammonium acetate (20:80, v/v) was used as the isocratic mobile phase. The assay was linear over the concentration range of 40.0–5000 ng/mL. The intra‐ and inter‐day precisions were within 12.9% in terms of relative standard deviation and the accuracy within 5.6% in terms of relative error. This simple and sensitive LC‐MS/MS method with short analytical time (3.5 min each sample) was successfully applied to the pharmacokinetic study of TP in healthy Chinese male volunteers after an oral dose of 300 mg TP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive and simple liquid chromatography–tandem mass spectrometric (HPLC‐MS/MS) method for the determination of corilagin in rat plasma has been developed. Samples were prepared with protein precipitation method and analyzed with a triple quadrupole tandem mass spectrometer. We employed negative electrospray ionization as the ionization source and the analytes were detected in multiple reaction monitoring mode. Separation was achieved on a C8 column eluted with mobile phase consisting of methanol–0.1% formic acid in a gradient mode at the flow rate of 0.3 mL/min. The total run time was 7.0 min.This method was proved to have good linearity in the concentration range of 2.5–1000.0 ng/mL. The lower limit of quantification of corilagin was 2.5 ng/mL. The intra‐ and inter‐day relative standard deviationa across three validation runs for four concentration levels were both <9.8%. The relative error was within ±6.0%. This assay offers advantages in terms of expediency and suitability for the analysis of corilagin in rat plasma. The practical utility of this new HPLC‐MS/MS method was confirmed in pilot plasma concentration studies in rats following oral administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid and sensitive LC–MS/MS method was developed and validated for the simultaneous determination of buprenorphine and its three metabolites (buprenorphine glucuronide, norbuprenorphine and norbuprenorphine glucuronide) as well as naloxone and its metabolite naloxone glucuronide in the rat plasma. A hydrophilic interaction chromatography column and a mobile phase containing acetonitrile and ammonium formate buffer (pH 3.5) were used for the chromatographic separation. Mass spectrometric detection was achieved by an electrospray ionization source in the positive mode coupled to a triple quadrupole mass analyzer. The calibration curves for the six analytes displayed good linearity over the concentration range 1.0 or 5.0–1000 ng/mL. The intra and inter‐day precision (CV) ranged from 2.68 to 16.4% and from 9.02 to 14.5%, respectively. The intra‐ and inter‐day accuracy (bias) ranged from −14.2 to 15.2% and from −9.00 to 4.80%, respectively. The extraction recoveries for all the analytes ranged from 55 to 86.9%. The LC–MS/MS method was successfully applied to a pharmacokinetic study of buprenorphine–naloxone combination in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号