首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Traditional photosensitizers (PSs) show reduced singlet oxygen (1O2) production and quenched fluorescence upon aggregation in aqueous media, which greatly affect their efficiency in photodynamic therapy (PDT). Meanwhile, non‐targeting PSs generally yield low efficiency in antibacterial performance due to their short lifetimes and small effective working radii. Herein, a water‐dispersible membrane anchor (TBD‐anchor) PS with aggregation‐induced emission is designed and synthesized to generate 1O2 on the bacterial membrane. TBD‐anchor showed efficient antibacterial performance towards both Gram‐negative (Escherichia coli) and Gram‐positive bacteria (Staphylococcus aureus). Over 99.8 % killing efficiency was obtained for methicillin‐resistant S. aureus (MRSA) when they were exposed to 0.8 μm of TBD‐anchor at a low white light dose (25 mW cm?2) for 10 minutes. TBD‐anchor thus shows great promise as an effective antimicrobial agent to combat the menace of multidrug‐resistant bacteria.  相似文献   

2.
Aluminum Chloride Phthalocyanine (AlPcCl) can be used as a photosensitizer (PS) for Photodynamic Inactivation of Microorganisms (PDI). The AlPcCl showed favorable characteristics for PDI due to high quantum yield of singlet oxygen (ΦΔ) and photostability. Physicochemical properties and photodynamic inactivation of AlPcCl incorporated in polymeric micelles of tri‐block copolymer (P‐123 and F‐127) against microorganisms Staphylococcus aureus, Escherichia coli and Candida albicans were investigated in this work. Previously, it was observed that the AlPcCl undergoes self‐aggregation in F‐127, while in P‐123 the PS is in a monomeric form suitable for PDI. Due to the self‐aggregation of AlPcCl in F‐127, this formulation did not show any effect on these microorganisms. On the other hand, AlPcCl formulated in P‐123 was effective against S. aureus and C. albicans and the death of microorganisms was dependent on the PS concentration and illumination time. Additionally, it was found that the values of PS concentration and illumination time to eradicate 90% of the initial population of microorganisms (IC90 and D90, respectively) were small for the AlPcCl in P‐123, showing the effectiveness of this formulation for PDI.  相似文献   

3.
The different thermally induced intermolecular electron transfer (IET) processes that can take place in the series of complexes [M(Cat‐N‐BQ)(Cat‐N‐SQ)]/[M(Cat‐N‐BQ)2], for which M=Co ( 2 ), Fe ( 3 ) and Ni( 4 ), and Cat‐N‐BQ and Cat‐N‐SQ denote the mononegative (Cat‐N‐BQ?) or dinegative (Cat‐N‐SQ2?) radical forms of the tridentate Schiff‐base ligand 3,5‐di‐tert‐butyl‐1,2‐quinone‐1‐(2‐hydroxy‐3,5‐di‐tert‐butylphenyl)imine, have been studied by variable‐temperature UV/Vis and NMR spectroscopies. Depending on the metal ion, rather different behaviors are observed. Complex 2 has been found to be one of the few examples so far reported to exhibit the coexistence of two thermally induced electron transfer processes, ligand‐to‐metal (IETLM) and ligand‐to‐ligand (IETLL). IETLL was only found to take place in complex 3 , and no IET was observed for complex 4 . Such experimental studies have been combined with ab initio wavefunction‐based CASSCF/CASPT2 calculations. Such a strategy allows one to solicit selectively the speculated orbitals and to access the ground states and excited‐spin states, as well as charge‐transfer states giving additional information on the different IET processes.  相似文献   

4.
Pathogen infections and cancer are two major human health problems. Herein, we report the synthesis of an organic salt photosensitizer (PS), called 4TPA-BQ, by a one-step reaction. 4TPA-BQ presents aggregation-induced emission features. Owing to the aggregation-induced reactive oxygen species generated and a sufficiently small ΔEST, 4TPA-BQ shows a satisfactorily high 1O2 generation efficiency of 97.8 %. In vitro and in vivo experiments confirmed that 4TPA-BQ exhibited potent photodynamic antibacterial performance against ampicillin-resistant Escherichia coli with good biocompatibility in a short time (15 minutes). When the incubation duration persisted long enough (12 hours), cancer cells were ablated efficiently, leaving normal cells essentially unaffected. This is the first reported time-dependent fluorescence-guided photodynamic therapy in one individual PS, which achieves ordered and multiple targeting simply by varying the external conditions. 4TPA-BQ reveals new design principles for the implementation of efficient PSs in clinical applications.  相似文献   

5.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

6.
A series of thermally polymerizable dendrimers of various generations, equipped with triphenylamine (TPA) and benzoxazine (BZ) groups, is synthesized through facile one‐pot Mannich condensations of N 1,N1‐bis(4‐aminophenyl)benzene‐1,4‐diamine (TPA–3NH2, as the core group), 4‐(bis(4‐aminophenyl)amino)phenol (TPA–2NH2–OH, as the AB2 branching group), and CH2O in 1,4‐dioxane. The ratios of the integrated areas in the 1H nuclear magnetic resonance spectra of these dendrimers are consistent with the theoretical numbers of protons, suggesting their successful syntheses. Bathochromic shifts of signals are evident in the UV–vis and photoluminescence spectra upon increasing the generation of the TPA–BZ dendrimers, consistent with an increase in the effective conjugation length. The TPA–BZ dendrimers are able to undergo thermal polymerization and display unique optical physical properties, resulting in thermoset TPA networks after thermal ring‐opening polymerization.  相似文献   

7.
Aggregated β‐amyloid (Aβ) is widely considered as a key factor in triggering progressive loss of neuronal function in Alzheimer's disease (AD), so targeting and inhibiting Aβ aggregation has been broadly recognized as an efficient therapeutic strategy for curing AD. Herein, we designed and prepared an organic platinum‐substituted polyoxometalate, (Me4N)3[PW11O40(SiC3H6NH2)2PtCl2] (abbreviated as PtII‐PW11) for inhibiting Aβ42 aggregation. The mechanism of inhibition on Aβ42 aggregation by PtII‐PW11 was attributed to the multiple interactions of PtII‐PW11 with Aβ42 including coordination interaction of Pt2+ in PtII‐PW11 with amino group in Aβ42, electrostatic attraction, hydrogen bonding and van der Waals force. In cell‐based assay, PtII‐PW11 displayed remarkable neuroprotective effect for Aβ42 aggregation‐induced cytotoxicity, leading to increase of cell viability from 49 % to 67 % at a dosage of 8 μm . More importantly, the PtII‐PW11 greatly reduced Aβ deposition and rescued memory loss in APP/PS1 transgenic AD model mice without noticeable cytotoxicity, demonstrating its potential as drugs for AD treatment.  相似文献   

8.
Silver nanoparticles (Ag NPs) of improved thermal stability against long‐term aggregation were prepared using the polystyrene‐b‐poly(4‐vinylpyridine)‐b‐polystyrene (PS‐b‐P4VP‐b‐PS) triblock copolymer as a multidentate ligand. First, PS‐b‐P4VP‐b‐PS was synthesized by sequential reversible addition–fragmentation transfer (RAFT) polymerization of styrene and 4‐vinylpydine using a trithiocarbonate chain transfer agent (CTA). Then Ag NPs were obtained by in situ reduction of silver nitrate using PS‐b‐P4VP‐b‐PS as a multidentate ligand. The obtained Ag NPs were stable in solution for at least 24 h while being heated at 110°C. The effect of the molar ratio of N atoms of the P4VP chain segment and AgNO3 on the stability of Ag NPs was studied, and the results suggested that Ag NPs were very stable even if the molar ratio of N atoms of the P4VP chain segment and AgNO3 was very low. This method is promising to scale up the preparation of metal NPs with good dispersibility and thermal stability, which still remains challenging. To further improve its thermal stability, 1,4‐dibromobutane was used to chemically crosslink the P4VP chain segment in solution. However, the results proved that the crosslink method is infeasible to further improve the thermal stability of Ag NPs in this system.  相似文献   

9.
This work shows that colloidal stability and aggregation kinetics of hydrophobic polystyrene (PS) nanospheres are extremely sensitive to the nature of the salt used to coagulate them. Three PS latices and four aggregating electrolytes, which all share the same cation (Na+) but have various anions located at different positions in the classical Hofmeister series depending on their kosmotropic or chaotropic character, are used. The present study focuses on analyzing different aggregating parameters, such as critical coagulation concentrations (CCC), cluster size distributions (CSD), initial kinetic constants K11, and fractal dimensions of the aggregates df. While aggregation induced by SO42? and Cl? behaved according to the predictions of the classical Derjaguin–Landau–Verwey–Overbeek theory, important discrepancies are found with NO3?, which become dramatic when using SCN?. These discrepancies among the anions were far more significant when they acted as counterions rather than as co‐ions. While SO42? and Cl? trigger fast diffusion‐limited aggregation, SCN? gives rise to a stationary cluster size distribution in a few aggregation times when working with cationic PS particles. Clear differences are found among all analyzed parameters (CCC, CSD, K11, and df), and the experimental findings show that particles aggregate in potential wells whose depth is controlled by the chaotropic character of the anion. This paper presents new experimental evidence that may help to understand the microscopic origin of Hofmeister effects, as the observations are consistent with appealing theoretical models developed in the last few years.  相似文献   

10.
A new two‐photon material, 3E,6E‐bis(2‐pyrid‐4′‐ylvinyl)dibenzothiophene (BPVDBT), has been firstly synthesized by an efficient Pd‐catalyzed Heck coupling route. The single‐ and two‐photon fluorescence, quantum yields, lifetimes, solvent effects of the chromophore were studied in detail and the compound exhibited solvent‐sensitivity. The fluorescence intensity (Iout) and input excitation intensity (Iin) can fit in well with the quadratic parabolas, which indicates that the up‐converted fluorescence was induced by the two‐photon absorption (TPA). TPA cross‐section of BPVDBT has been measured using the two‐photon‐induced fluorescence method, whose value is 14.24×10?50 cm4·s·photon?1·molecule?1 at 750 nm. The experimental results confirm that BPVDBT is a good two‐photon absorbing chromophore with an A‐π‐A type.  相似文献   

11.
We describe two water‐soluble ruthenium complexes, [ 1 ]Cl2 and [ 2 ]Cl2, that photodissociate to release a cytotoxic nicotinamide phosphoribosyltransferase (NAMPT) inhibitor with a low dose (21 J cm−2) of red light in an oxygen‐independent manner. Using a specific NAMPT activity assay, up to an 18‐fold increase in inhibition potency was measured upon red‐light activation of [ 2 ]Cl2, while [ 1 ]Cl2 was thermally unstable. For the first time, the dark and red‐light‐induced cytotoxicity of these photocaged compounds could be tested under hypoxia (1 % O2). In skin (A431) and lung (A549) cancer cells, a 3‐ to 4‐fold increase in cytotoxicity was found upon red‐light irradiation for [ 2 ]Cl2, whether the cells were cultured and irradiated with 1 % or 21 % O2. These results demonstrate the potential of photoactivated chemotherapy for hypoxic cancer cells, in which classical photodynamic therapy, which relies on oxygen activation, is poorly efficient.  相似文献   

12.
UV‐chromophores contained in human skin may act as endogenous sensitizers of photooxidative stress and can be employed therapeutically for the photodynamic elimination of malignant cells. Here, we report that 6‐formylindolo[3,2‐b]carbazole (FICZ), a tryptophan‐derived photoproduct and endogenous aryl hydrocarbon receptor agonist, displays activity as a nanomolar sensitizer of photooxidative stress, causing the photodynamic elimination of human melanoma and nonmelanoma skin cancer cells in vitro and in vivo. FICZ is an efficient UVA/Visible photosensitizer having absorbance maximum at 390 nm (ε = 9180 L mol?1 cm?1), and fluorescence and singlet oxygen quantum yields of 0.15 and 0.5, respectively, in methanol. In a panel of cultured human squamous cell carcinoma and melanoma skin cancer cells (SCC‐25, HaCaT‐ras II‐4, A375, G361, LOX), photodynamic induction of cell death was elicited by the combined action of solar simulated UVA (6.6 J cm?2) and FICZ (≥10 nm ), preceded by the induction of oxidative stress as substantiated by MitoSOX Red fluorescence microscopy, comet detection of Fpg‐sensitive oxidative genomic lesions and upregulated stress response gene expression (HMOX1, HSPA1A, HSPA6). In SKH1 “high‐risk” mouse skin, an experimental FICZ/UVA photodynamic treatment regimen blocked the progression of UV‐induced tumorigenesis suggesting feasibility of harnessing FICZ for the photooxidative elimination of malignant cells in vivo.  相似文献   

13.
There is considerable interest in the development of novel and more efficient delivery systems for improving the efficacy of photodynamic therapy (PDT). The authors in this highlighted issue describe the synthesis and the photobiological characterizations of two photosensitizer (PS) conjugates based on β‐carboline derivatives covalently conjugated to folic acid (FA) coupled to bovine serum albumin (BSA) as a carrier system specifically targeting cancer cells overexpressing FA receptor alpha (FRα). Accordingly, only the FA–BSA–β‐carboline conjugates are internalized specifically in FRα‐positive cells and are proved to be phototoxic. On the other hand, albumin–β‐carboline conjugates without FA or β‐carboline derivatives alone are not internalized and nontoxic. This conjugate is among the first to produce a conjugate composed of a PS and FA molecules that are directly conjugated to BSA. In addition, the in vitro studies are the first evidence that directly conjugated FA‐BSA can be used as carriers to selectively enhance cytotoxicity by PDT relative to unmodified PS or nontargeted BSA‐PS. This strategy is a positive step forward for the covalent design and construction of a photodynamic nanomedicine for FR‐positive tumors.  相似文献   

14.
We have developed and implemented pseudospectral time‐dependent density‐functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm–Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time‐dependent density‐functional theory with full linear response (PS‐FLR‐TDDFT) and within the Tamm–Dancoff approximation (PS‐TDA‐TDDFT) for G2 set molecules using B3LYP/6‐31G** show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS‐FLR‐TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS‐FLR‐TDDFT and best estimations demonstrate that the accuracy of both PS‐FLR‐TDDFT and PS‐TDA‐TDDFT. Calculations for a set of medium‐sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6‐31G** basis set show PS‐TDA‐TDDFT provides 19‐ to 34‐fold speedups for Cn fullerenes with 450–1470 basis functions, 11‐ to 32‐fold speedups for nanotubes with 660–3180 basis functions, and 9‐ to 16‐fold speedups for organic molecules with 540–1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46‐residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6‐31G** basis set with up to 8100 basis functions show that PS‐FLR‐TDDFT CPU time scales as N2.05 with the number of basis functions. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
《中国化学》2017,35(9):1445-1451
Graphene oxide (GO ) and its functionalized derivatives have attracted increasing attention in medical treatment. Herein, a reduction sensitive PEI‐GO ‐SS ‐TPP was synthesized for photodynamic therapy. More than 80% porphyrin release was observed in the presence of 10 mmol•L−1 DTT in one day. The confocal laser scanning microscopy confirmed that the cell uptake efficiency of PEI‐GO‐SS‐TPP was remarkably enhanced as compared to free porphyrin which was significantly dependent on incubation time. For photodynamic therapy, GSH‐OEt could effectively increase the photodynamic therapy efficiency of PEI‐GO ‐SS ‐TPP . Compared with free porphyrin, the toxicity from PEI‐GO ‐SS ‐TPP is much higher with a low IC50 (2.1 µg/mL ) value. All results indicate that the PEI‐GO ‐SS ‐TPP PSs are promising for photodynamic therapy.  相似文献   

16.
Nanocarriers are employed to deliver photosensitizers for photodynamic therapy (PDT) through the enhanced penetration and retention effect, but disadvantages including the premature leakage and non‐selective release of photosensitizers still exist. Herein, we report a 1O2‐responsive block copolymer (POEGMA‐b‐P(MAA‐co‐VSPpaMA) to enhance PDT via the controllable release of photosensitizers. Once nanoparticles formed by the block copolymer have accumulated in a tumor and have been taken up by cancer cells, pyropheophorbide a (Ppa) could be controllably released by singlet oxygen (1O2) generated by light irradiation, enhancing the photosensitization. This was demonstrated by confocal laser scanning microscopy and in vivo fluorescence imaging. The 1O2‐responsiveness of POEGMA‐b‐P(MAA‐co‐VSPpaMA) block copolymer enabled the realization of self‐amplified photodynamic therapy by the regulation of Ppa release using NIR illumination. This may provide a new insight into the design of precise PDT.  相似文献   

17.
E,E-1,4-Bis(4'-N,N-diphenylaminostyryl)-2,5-dimethoxybenzene (DPAMOB) has been synthesized by a simple and effective solid phase Wittig reaction and characterized by 1^H NMR spectra and elemental analysis, Linear absorption, single-photon induced fluorescence and two-photon induced fluorescence spectra were experimentally studied. The new dye has a large two-photon absorption (TPA) cross-section of σr= 1007,2 GM [1 GM= 1 × 10^-50 cm^4·s/(photon molecule)] at 800 nm measured by the two-photon induced fluorescence method. The experimental results confirm that DPAMOB is a good TPA chromophore and can successfully initiate two-photon photopolymerization of ethoxylated trimethylolpropane triacrylate esters (SR454). Finally, a microstructure has been fabricated by use of DPAMOB as initiator.  相似文献   

18.
The adsorption behaviour of the CdII–MOF {[Cd(L)2(ClO4)2]·H2O ( 1 ), where L is 4‐amino‐3,5‐bis[3‐(pyridin‐4‐yl)phenyl]‐1,2,4‐triazole, for butan‐2‐one was investigated in a single‐crystal‐to‐single‐crystal (SCSC) fashion. A new host–guest system that encapsulated butan‐2‐one molecules, namely poly[[bis{μ3‐4‐amino‐3,5‐bis[3‐(pyridin‐4‐yl)phenyl]‐1,2,4‐triazole}cadmium(II)] bis(perchlorate) butanone sesquisolvate], {[Cd(C24H18N6)2](ClO4)2·1.5C4H8O}n, denoted C4H8O@Cd‐MOF ( 2 ), was obtained via an SCSC transformation. MOF 2 crystallizes in the tetragonal space group P43212. The specific binding sites for butan‐2‐one in the host were determined by single‐crystal X‐ray diffraction studies. N—H…O and C—H…O hydrogen‐bonding interactions and C—H…π interactions between the framework, ClO4? anions and guest molecules co‐operatively bind 1.5 butan‐2‐one molecules within the channels. The adsorption behaviour was further evidenced by 1H NMR, IR, TGA and powder X‐ray diffraction experiments, which are consistent with the single‐crystal X‐ray analysis. A 1H NMR experiment demonstrates that the supramolecular interactions between the framework, ClO4? anions and guest molecules in MOF 2 lead to a high butan‐2‐one uptake in the channel.  相似文献   

19.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

20.
Donor–acceptor systems based on subporphyrins with nitro and amino substituents at meta and para positions of the meso‐phenyl groups were synthesized and their photophysical properties have been systematically investigated. These molecules show two types of charge‐transfer interactions, that is, from center to periphery and periphery to center depending on the peripheral substitution, in which the subporphyrin moiety plays a dual role as both donor and acceptor. Based on the solvent‐polarity‐dependent photophysical properties, we have shown that the fluorescence emission of para isomers originates from the solvatochromic, dipolar, symmetry‐broken, and relaxed excited states, whereas the non‐solvatochromic fluorescence of meta isomers is of the octupolar type with false symmetry breaking. The restricted meso‐(4‐aminophenyl) rotation at low temperature prevents the intramolecular charge‐transfer (ICT)‐forming process. The two‐photon absorption (TPA) cross‐section values were determined by photoexcitation at 800 nm in nonpolar toluene and polar acetonitrile solvents to see the effect of ICT on the TPA processes. The large enhancement in the TPA cross‐section value of approximately 3200 GM (1 GM=10?50 cm4 s photon?1) with donor–acceptor substitution has been attributed to the octupolar effect and ICT interactions. A correlation was found between the electron‐donating/‐withdrawing abilities of the peripheral groups and the TPA cross‐section values, that is, p‐aminophenyl>m‐aminophenyl>nitrophenyl. The increased stability of octupolar ICT interactions in highly polar solvents enhances the TPA cross‐section value by a factor of approximately 2 and 4, respectively, for p‐amino‐ and m‐nitrophenyl‐substituted subporphyrins. On the other hand, the stabilization of the symmetry‐broken, dipolar ICT state gives rise to a negligible impact on the TPA processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号