首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By applying caged thymidine residues, DNA duplexes were created in which HgII-mediated base pair formation can be triggered by irradiation with light. When a bidentate ligand was used as the complementary nucleobase, an unprecedented stepwise formation of different metal-mediated base pairs was achieved.  相似文献   

2.
A GNA (glycol nucleic acid) functionalized nucleoside analogue containing the artificial nucleobase 1H‐imidazo[4,5‐f][1,10]phenanthroline (P) was used to form a copper(I)‐mediated base pair within a DNA duplex. The geometrical constraints imposed by the artificial nucleobase play a pivotal role in this unprecedented stabilization of copper(I) in aqueous medium via metal‐mediated base pairing. The formation of the copper(I)‐mediated base pair was investigated by temperature‐dependent UV spectroscopy and CD spectroscopy. The metal‐mediated base pair stabilizes the DNA oligonucleotide duplex by 23 °C. A redox chemistry approach confirmed that this base pair formation was due to the incorporation of copper(I) into the duplex. This first report of a copper(I)‐mediated base pair adds metal‐based diversity to the field and consequently opens up the range of possible applications of metal‐modified nucleic acids.  相似文献   

3.
The present paper covers electronic structures and spectra of the bases and the base pairs of nucleic acids calculated by using the INDO/S method. For free bases we give the energy levels of ground states and transition energies of low-lying excited states and discuss the band characters. The results indicate that the calculated spectra are in good agreement with experimental values. On the other hand, our calculations for A-T and G-C pairs are very beneficial to understanding hydrogen bond properties of these pairs.  相似文献   

4.
The first dinuclear metal‐mediated base pair containing divalent metal ions has been prepared. A combination of the neutral bis(monodentate) purine derivative 1,N6‐ethenoadenine (ϵA), which preferentially binds two metal ions with a parallel alignment of the N−M bonds, and the canonical nucleobase thymine (T), which readily deprotonates in the presence of HgII and thereby partially compensates the charge accumulation due to the two closely spaced divalent metal ions, yields the dinuclear T‐HgII2ϵA base pair. This metal‐mediated base pair stabilizes the DNA oligonucleotide duplex as shown by an increase of 8 °C in its melting temperature. Formation of the base pair was demonstrated by temperature‐dependent UV spectroscopy as well as by titration experiments monitored by UV and CD spectroscopy.  相似文献   

5.
A family of artificial nucleosides has been developed by applying the CuI‐catalyzed Huisgen 1,3‐dipolar cycloaddition. Starting from 2‐deoxy‐β‐D ‐glycosyl azide as a common precursor, three bidentate nucleosides have been synthesized. The 1,2,3‐triazole involved in all three nucleobases is complemented by 1,2,4‐triazole ( TriTri ), pyrazole ( TriPyr ), or pyridine ( TriPy ). Molecular structures of two metal complexes indicate that metal‐mediated base pairs of TriPyr may not be fully planar. An investigation of DNA oligonucleotide duplexes comprising the new “click” nucleosides showed that they can bind AgI to form metal‐mediated base pairs. In particular the mispair formed from TriPy and the previously established imidazole nucleoside is significantly stabilized in the presence of AgI. A comparison of different oligonucleotide sequences allowed the determination of general factors involved in the stabilization of nucleic acids duplexes with metal‐mediated base pairs.  相似文献   

6.
错配核酸的研究进展   总被引:5,自引:0,他引:5  
陈绘丽  杨频 《化学进展》2002,14(2):133-140
本文通过介绍多种错配核酸的结构及其热力学性质,详细地描述了非Watson-Crick配对核酸的最新进展。这方面的研究有利于阐明生物体内错配核酸的识别修复机理及核酸二级结构的预测,并为合理设计新的人工核酸修复酶提供了理论基础。  相似文献   

7.
DNAzymes are widely used as functional units for creating DNA-based sensors and devices. Switching of DNAzyme activity by external stimuli is of increasing interest. Herein we report a CuII-responsive DNAzyme rationally designed by incorporating one of the most stabilizing artificial metallo-base pairs, a CuII-mediated carboxyimidazole base pair (ImC-CuII-ImC), into a known RNA-cleaving DNAzyme. Cleavage of the substrate was suppressed without CuII, but the reaction proceeded efficiently in the presence of CuII ions. This is due to the induction of a catalytically active structure by ImC-CuII-ImC pairing. The on/off ratio was as high as 12-fold, which far exceeds that of the previously reported DNAzyme with a CuII-mediated hydroxypyridone base pair. The DNAzyme activity can be regulated specifically in response to CuII ions during the reaction through the addition, removal, or reduction of CuII. This approach should advance the development of stimuli-responsive DNA systems with a well-defined sharp switching function.  相似文献   

8.
DNA duplexes containing 5‐modified uracil pairs (5‐bromo, 5‐fluoro, and 5‐cyanouracil) bind selectivity to metal ions. Their selectivity is sensitive to the pH value of the solution (see picture), as the acidities of the modified uracil bases vary according to the electron‐withdrawing properties of the substituents.

  相似文献   


9.
An artificial nucleoside surrogate with 1H‐imidazo[4,5‐f][1,10]phenanthroline ( P ) acting as an aglycone has been introduced into DNA oligonucleotide duplexes. This nucleoside surrogate can act as a bidentate ligand, and so is useful in the context of metal‐mediated base pairs. Several duplexes involving a hetero base pair with an imidazole nucleoside have been investigated. The stability of DNA duplexes incorporating the respective AgI‐mediated base pairs strongly depends on the sequence context. Quantum mechanical/molecular mechanical (QM/MM) calculations have been performed in order to gain insight into the factors determining this sequence dependence. The results indicated that, in addition to the stabilizing effect that results from the formation of coordinative bonds, destabilizing effects may occur when the artificial base pair does not fit optimally into the surrounding B‐DNA duplex.  相似文献   

10.
11.
12.
The oligonucleotide d(TX)9, which consists of an octadecamer sequence with alternating non‐canonical 7‐deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double‐stranded DNA through the formation of hydrogen‐bonded Watson–Crick base pairs. dsDNA with metal‐mediated base pairs was then obtained by selectively replacing W‐C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag+ ions, and its stability is significantly enhanced in the presence of Ag+ ions while its double‐helix structure is retained. Temperature‐dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)‐mediated base pairs. This strategy could become useful for preparing stable metallo‐DNA‐based nanostructures.  相似文献   

13.
Metal‐mediated base pairs can be used to insert metal ions into nucleic acids at precisely defined positions. As structural data on the resulting metal‐modified DNA are scarce, appropriate model complexes need to be synthesized and structurally characterized. Accordingly, the molecular structures of nine transition metal complexes of N‐methyl‐2, 2'‐dipicolylamine (dipic) are reported. In combination with an azole‐containing artificial nucleoside, this tridentate ligand had recently been used to generate metal‐mediated base pairs (Chem. Commun. 2011 , 47, 11041–11043). The PdII and PtII complexes reported here confirm that the formation of planar complexes (as required for a metal‐mediated base pair) comprising N‐methyl‐2, 2'‐dipicolylamine is possible. Two HgII complexes with differing stoichiometry indicate that a planar structure might also be formed with this metal ion, even though it is not favored. In the complex [Ag2(dipic)2](ClO4)2, the two AgI ions are located close to one another with an Ag ··· Ag distance of 2.9152(3) Å, suggesting the presence of a strong argentophilic interaction.  相似文献   

14.
Selective modification of natural proteins is a daunting methodological challenge and a stringent test of selectivity and reaction scope. There is a continued need for new reactivity and new selectivity concepts. Transition metals exhibit a wealth of unique reactivity that is orthogonal to biological reactions and processes. As such, metal‐based methods play an increasingly important role in bioconjugation. This Review examines metal‐based methods as well as their reactivity and selectivity for the functionalization of natural proteins and peptides.  相似文献   

15.
The first parallel‐stranded DNA duplex with Hoogsteen base pairing that readily incorporates an Ag+ ion into an internal mispair to form a metal‐mediated base pair has been created. Towards this end, the highly stabilizing 6 FP ‐Ag+‐ 6 FP base pair comprising the artificial nucleobase 6‐furylpurine ( 6 FP ) was devised. A combination of temperature‐dependent UV spectroscopy, CD spectroscopy, and DFT calculations was used to confirm the formation of this base pair. The nucleobase 6 FP is capable of forming metal‐mediated base pairs both by the Watson–Crick edge (i.e. in regular antiparallel‐stranded DNA) and by the Hoogsteen edge (i.e. in parallel‐stranded DNA), depending on the oligonucleotide sequence and the experimental conditions. The 6 FP ‐Ag+‐ 6 FP base pair within parallel‐stranded DNA is the most strongly stabilizing Ag+‐mediated base pair reported to date for any type of nucleic acid, with an increase in melting temperature of almost 15 °C upon the binding of one Ag+ ion.  相似文献   

16.
17.
18.
The topological diversity of DNA G‐quadruplexes may play a crucial role in its biological function. Reversible control over a specific folding topology was achieved by the synthesis of a chiral, glycol‐based pyridine ligand and its fourfold incorporation into human telomeric DNA by solid‐phase synthesis. Square‐planar coordination to a CuII ion led to the formation of a highly stabilizing intramolecular metal–base tetrad, substituting one G‐tetrad in the parent unimolecular G‐quadruplex. For the Tetrahymena telomeric repeat, CuII‐triggered switching from a hybrid‐dominated conformer mixture to an antiparallel topology was observed. CuII‐dependent control over a protein–G‐quadruplex interaction was shown for the thrombin–tba pair (tba=thrombin‐binding aptamer).  相似文献   

19.
New amphiphilic gelators that contained both Schiff base and L ‐glutamide moieties, abbreviated as o‐SLG and p‐SLG, were synthesized and their self‐assembly in various organic solvents in the absence and presence of metal ions was investigated. Gelation test revealed that o‐SLG formed a thermotropic gel in many organic solvents, whilst p‐SLG did not. When metal ions, such as Cu2+, Zn2+, Mg2+, Ni2+, were added, different behaviors were observed. The addition of Cu2+ induced p‐SLG to from an organogel. In the case of o‐SLG, the addition of Cu2+ and Mg2+ ions maintained the gelating ability of the compound, whilst Zn2+ and Ni2+ ions destroyed the gel. In addition, the introduction of Cu2+ ions caused the nanofiber gel to perform a chiral twist, whilst the Mg2+ ions enhanced the fluorescence of the gel. More interestingly, the Mg2+‐ion‐mediated organogel showed differences in the fluorescence quenching by D ‐ and L ‐tartaric acid, thus showing a chiral recognition ability.  相似文献   

20.
Sterically encumbered Lewis acid and Lewis base combinations do not undergo the ubiquitous neutralization reaction to form “classical” Lewis acid/Lewis base adducts. Rather, both the unquenched Lewis acidity and basicity of such sterically “frustrated Lewis pairs (FLPs)” is available to carry out unusual reactions. Typical examples of frustrated Lewis pairs are inter‐ or intramolecular combinations of bulky phosphines or amines with strongly electrophilic RB(C6F5)2 components. Many examples of such frustrated Lewis pairs are able to cleave dihydrogen heterolytically. The resulting H+/H? pairs (stabilized for example, in the form of the respective phosphonium cation/hydridoborate anion salts) serve as active metal‐free catalysts for the hydrogenation of, for example, bulky imines, enamines, or enol ethers. Frustrated Lewis pairs also react with alkenes, aldehydes, and a variety of other small molecules, including carbon dioxide, in cooperative three‐component reactions, offering new strategies for synthetic chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号