首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrated differential phase-contrast scanning transmission electron microscopy (iDPC-STEM) is capable of directly probing guest molecules in zeolites, owing to its sufficient and interpretable image contrast for both heavy and light elements under low-dose conditions. This unique ability is demonstrated by imaging volatile organic compounds adsorbed in zeolite Silicalite-1; iDPC-STEM was then used to investigate molybdenum supported on various zeolites including Silicalite-1, ZSM-5, and mordenite. Isolated single-Mo clusters were observed in the micropores of ZSM-5, demonstrating the crucial role of framework Al in driving Mo atomically dispersed into the micropores. Importantly, the specific one-to-one Mo-Al interaction makes it possible to locate Al atoms, that is, catalytic active sites, in the ZSM-5 framework from the images, according to the positions of Mo atoms in the micropores.  相似文献   

2.
以碳纳米管为模板合成的带有介孔和微孔的ZSM-5分子筛具有不同的复合结构。用三氯乙酸(TCA)可选择性地将中孔的铝脱除。基于TCA分子大小,它可能只扩散到中孔中,因而使得微孔部分不脱铝。从分子筛结构中脱除铝原子导致催化剂中出现中空的空间。若将硅原子填充到空位中,那么介孔部分的结构会变得与硅酸盐类似,不具有催化性能。本文使用含硅的溶液来填充空位,将硅原子直接取代中孔结构中的铝原子。通过此特殊方法改变微孔和介孔的几何形状和性质,从而使改性HZSM-5上的积碳量从14%降低至3%。  相似文献   

3.
The structure and electronic properties of the Brønsted acid site in B, Al or Ga isomorphously substituted ZSM‐5 zeolites were studied by using quantum cluster and embedded ONIOM approaches. In the former approach, zeolites are modeled by 5T and 12T quantum clusters, where T represents a Si or Al atom. In the latter model, called “Embedded ONIOM”, the long‐range interactions of the zeolite lattice beyond the 12T quantum cluster is included via optimized point charges added to the ONIOM(B3LYP/6‐31G(d,p):UFF). Inclusion of the extended zeolitic framework covering the nanocavity has an effect on the structure and adsorption properties. We found that the OH distances and v OH of the acidic proton in zeolite obtained from both models can predict the trend of acid strength as: B‐ZSM‐5 < Ga‐ZSM‐5 < Al‐ZSM‐5, which is in very good agreement with the experimental sequence. Furthermore, the PA data calculated from E‐ONIOM is also consistent with the experimental trend: B‐ZSM‐5 < Ga‐ZSM‐5 < Al‐ZSM‐5. It has, therefore, been demonstrated that our embedded ONIOM model provides accurate performance and can be one of the useful and affordable methods for future mechanistic studies involving petrochemical reactions. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
Microporous H‐ZSM‐5 containing one Brønsted acid site per asymmetric unit is deliberately chosen to host pyridine, methanol, and ammonia as guest molecules. By using new‐generation in situ synchrotron X‐ray powder diffraction combined with Rietveld refinement, the slight but significant alteration in scattering parameters of framework atoms modified by the guest molecules enables the user to elucidate their adsorption geometries and interactions with the Brønsted acid sites in H‐ZSM‐5 in terms of atomic distances and angles within experimental errors. The conclusion, although demonstrated in the H‐ZSM‐5, is expected to be transferable to other zeolites. This approach provides a stepping stone towards the rational engineering of molecular interaction(s) with acid sites in zeolitic catalysis.  相似文献   

5.
27Al 3Q MAS NMR and UV/Vis spectroscopy with bare CoII ions as probes of Al pairs in the zeolite framework were employed to analyze the location of framework Al atoms in the channel system of zeolite ZSM‐5. Furthermore, the effect of Na+ ions together with tetrapropylammonium cation (TPA+) in the ZSM‐5 synthesis gel on the location of Al in the channel system was investigated. Zeolites prepared using exclusively TPA+ as a structure‐directing agent (i.e., in the absence of Na+ ions) led to 55–90 % of Al atoms located at the channel intersection, regardless the presence or absence of Al pairs [Al?O?(Si?O)2?Al sequences in one ring] in the zeolite framework. The presence of Na+ ions in the synthesis gel did not modify the Al location at the channel intersection (55–95 % of Al atoms) and led only to changes in i) the distribution of framework Al atoms between Al pairs (decrease) and single isolated Al atoms (increase), and ii) the siting of Al in distinguishable framework tetrahedral sites.  相似文献   

6.
Gamma‐ray (γ‐ray) irradiation was introduced into zeolite synthesis. The crystallization process of zeolite NaA, NaY, Silicalite‐1, and ZSM‐5 were greatly accelerated. The crystallization time of NaA zeolite was significantly decreased to 18 h under γ‐ray irradiation at 20 °C, while more than 102 h was needed for the conventional process. Unexpectedly, more mesopores were created during this process, and thus the adsorption capacity of CO2 increased by 6‐fold compared to the NaA prepared without γ‐ray irradiation. Solid experimental evidence and density function theory (DFT) calculations demonstrated that hydroxyl free radicals (OH*) generated by γ‐rays accelerated the crystallization of zeolite NaA. Besides NaA, mesoporous ZSM‐5 with MFI topology was also successfully synthesized under γ‐ray irradiation, which possessed excellent catalytic performance for methanol conversion, suggesting the universality of this new synthetic strategy for various zeolites.  相似文献   

7.
A variety of phosphated zeolite H‐ZSM‐5 samples are investigated by using a combination of Fourier transfer infrared (FTIR) spectroscopy, single pulse 27Al, 29Si, 31P, 1H‐31P cross polarization (CP), 27Al‐31P CP, and 27Al 3Q magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, scanning transmission X‐ray microscopy (STXM) and N2 physisorption. This approach leads to insights into the physicochemical processes that take place during phosphatation. Direct phosphatation of H‐ZSM‐5 promotes zeolite aggregation, as phosphorus does not penetrate deep into the zeolite material and is mostly found on and close to the outer surface of the zeolite, acting as a glue. Phosphatation of pre‐steamed H‐ZSM‐5 gives rise to the formation of a crystalline tridymite AlPO4 phase, which is found in the mesopores of dealuminated H‐ZSM‐5. Framework aluminum species interacting with phosphorus are not affected by hydrothermal treatment. Dealuminated H‐ZSM‐5, containing AlPO4, retains relatively more framework Al atoms and acid sites during hydrothermal treatment than directly phosphated H‐ZSM‐5.  相似文献   

8.
The structures of alkali‐exchanged faujasite (X–FAU, X = Li+ or Na+ ion) and ZSM‐5 (Li–ZSM‐5) zeolites and their interactions with ethylene have been investigated by means of quantum cluster and embedded cluster approaches at the B3LYP/6‐31G(d, p) level of theory. Inclusion of the Madelung potential from the zeolite framework has a significant effect on the structure and interaction energies of the adsorption complexes and leads to differentiation of different types of zeolites (ZSM‐5 and FAU) that cannot be drawn from a typical quantum cluster model, H3SiO(X)Al(OH)2OSiH3. The Li–ZSM‐5 zeolite is predicted to have a higher Lewis acidity and thus higher ethylene adsorption energy than the Li–FAU zeolites (16.4 vs. 14.4 kcal/mol), in good agreement with the known acidity trend of these two zeolites. On the other hand, the cluster models give virtually the same adsorption energies for both zeolite complexes (8.9 vs. 9.1 kcal/mol). For the larger cation‐exchanged Na–FAU complex, the adsorption energy (11.6 kcal/mol) is predicted to be lower than that of Li–FAU zeolites, which compares well with the experimental estimate of about 9.6 kcal/mol for ethylene adsorption on a less acidic Na–X zeolite. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 333–340, 2003  相似文献   

9.
郭向丹  黄世萍  滕加伟     谢在库 《中国化学》2005,23(12):1593-1599
Frameworks of NanZSM-5 type zeolites with various Si/A1 ratios have been constructed and optimized with molecular dynamic quench simulation. The results show that the structure parameters of NanZSM-5 type zeolite, including the bond length and atomic charges, are consistent with those predicted by ab initio cluster calculations. It was also observed that atomic charges of Si atoms were shifted to higher field in NanZSM-5 type zeolite with lower Si/Al ratio. Then, the adsorption of isobutene on NanZSM-5 with various Si/Al ratios has been investigated using grand canonical ensemble Monte Carlo simulation and Cvff-300-1.01 forcefield. The simulated adsorption amount was in good agreement with the experimental data. Based on these facts, the effects of Si/Al ratio on the adsorption amount and adsorption isotherms of isobutene on NanZSM-5 were predicted. The results indicated that Si/Al ratio was important for the adsorption of isobutene and the adsorption amount was decreased as the Si/Al ratio was increased, which can be explained that the atomic charge of Na^+ cation would influence greatly the π electrons of the isobutene double bond due to the Coulomb force. In addition, the adsorption sites of isobutene and interaction energy of isobutene with NanZSM-5 were also discussed.  相似文献   

10.
The development of hierarchical macro‐ or mesoporous zeolites is essential in zeolite synthesis because the size of the micropores limits mass transport and their use as industrial catalysts for bulky molecules. Although major breakthroughs have been achieved, fabricating crystallographically ordered mesoporous zeolites using a templating strategy is still an unsolved challenge. This minireview highlights our recent efforts on the self‐assembly of amphiphilic molecules to obtain ordered hierarchical MFI zeolites by introducing aromatic groups into the hydrophobic tail of the amphiphilic molecules. Owing to the geometric matching between the self‐assembled aromatic tails and the MFI framework, a) single‐crystalline mesostructured zeolite nanosheets (SCZNs), b) SCZNs with a 90° rotational intergrowth structure, c) a hierarchical MFI zeolite with a two‐dimensional square P4mm mesostructure, and d) a single‐crystalline mesoporous ZSM‐5 with three‐dimensional pores and sheetlike mesopores layered along the a‐axis were successfully synthesized.  相似文献   

11.
A new series of multiquaternary ammonium structure‐directing agents, based on 1,4‐diazabicyclo[2.2.2]octane, was prepared. ZSM‐5 zeolites with nanosheet morphology (10 nm crystal thickness) were synthesized under hydrothermal conditions using multiquaternary ammonium surfactants as the zeolite structure‐generating agents. Both wide‐angle and small‐angle diffraction patterns were obtained using only a suitable structure‐directing agent under a specific zeolite synthesis composition. A mechanism of zeolite formation is proposed based on the results obtained from various physicochemical characterizations. ZSM‐5 materials were investigated in catalytic reactions requiring medium to strong acidity, which are important for the synthesis of a wide range of industrially important fine and specialty chemicals. The catalytic activity of ZSM‐5 materials was compared with that of the conventional ZSM‐5 and amorphous mesoporous aluminosilicate Al‐MCM‐41. The synthesis strategy of the present investigation using the new series of structure‐directing agents could be extended for the synthesis of other related zeolites or other porous materials in the future. Zeolite with a structural feature as small as the size of a unit cell (5–10 nm) with hierarchically ordered porous structure would be very promising for catalysis.  相似文献   

12.
作为六大温室气体之一, N2O的增温潜能是 CO2的310倍,甲烷的21倍,目前仍然以0.80 ppb/年的速度增长,但是减排成本很低,因此对 N2O的消除具有重要意义.在工业中金属修饰的微孔分子筛因其优良的催化活性,高水热稳定性,低成本等优点而成为研究重点.但是微孔分子筛狭窄的微孔孔道限制了金属前驱体的进入,导致活性金属含量低,进而限制了活性的提高.因此采用一定的改性手段减小分子筛颗粒尺寸,缩短微孔孔道长度或者扩大微孔孔道来增加活性铁物种的含量进而提高分子筛催化活性.
  本文选用商用的 ZSM-5和 beta分子筛作为母板分子筛,按照3 g :50 mL比例将分子筛母板与1.0 mol/L的 HNO3在室温下混合,分别搅拌0,2和24 h,然后采用液相离子交换法负载金属铁制备得到 Fe-ZSM-5和 Fe-beta.通过 X射线衍射、N2物理吸吸脱附、电感耦合等离子原子发射光谱仪、扫描电镜、透射电镜、NH3程序升温脱附及紫外漫反射(UV-vis)等手段对不同时间处理的分子筛的形貌、酸性和铁物种等物理化学性质进行表征.对两种催化剂催化消除 N2O的反应性能进行了测试.结果显示,温和的酸处理下分子筛脱除了部分 Al,其中, ZSM-5分子筛的表现为由外向内逐层刻蚀,颗粒尺寸减小,孔道长度缩短,但是由于 MFI型分子筛较高的稳定性,酸处理对分子筛孔道大小的改变并不明显,而对于 beta分子筛,首先是其中大量无定形物种的去除,然后对孔道进行修饰,使之略微扩大,但是对颗粒尺寸的影响不大.
   ICP结果显示,商用 ZSM-5和 beta分子筛经过温和的酸处理改性后, Si/Al比增大,负载 Fe的含量明显增加,各催化剂催化消除 N2O的活性也出现了不同程度的提高. Fe-ZSM-5和 Fe-beta分子筛上 N2O完全转化温度分别向低温段移动了10–15和30°C. UV-vis谱图显示,分子筛中存在着不同种类的铁物种,通过分峰计算发现,孤立的 Fe3+铁离子和低聚态的 Fex3+Oy均是催化活性铁物种,其含量的增加部分也解释了活性提高的原因.  相似文献   

13.
Internal defect SiOH and SiO? groups evolve during the structure formation of high‐Si zeolites in the presence of a cationic organic structure‐directing agent (SDA). These negatively charged defects do not completely disappear upon calcination. Herein we investigate the clustering of defect groups and their location within the pore walls of four zeolites. ZSM‐12, ZSM‐5, and SSZ‐74 have three clustered SiOH groups which are hydrogen‐bonded to SiO?, whereas SSZ‐24 has only two. These defects interact with the structure‐directing quaternary ammonium ions preferably close to the charge center, unless steric shielding is present. The framework topologies of ZSM‐12, ZSM‐5, and SSZ‐24 have connected six‐rings where the organics interact with the defects. It is suggested that these six‐ring patterns form connectivity defects. SSZ‐74 is unique, it does not contain an extended six‐ring motif, so vacancy defects form instead.  相似文献   

14.
Constructing a robust hybrid material with a porous inorganic and a porous organic framework is highly intriguing owing to its diverse functionality and porosity. However, the line of synthesis is not straightforward, since their nucleation and crystal growth processes are incompatible. Here, a simple method for the fabrication of hybrid zeolite/metal–organic framework of different framework structures is developed wherein the less‐useful extra‐framework aluminum species present in the zeolite surrogate the growth of metal organic framework (MOF) from the zeolite matrix in the presence of organic linkers of the corresponding MOF. An NMR study confirms that all the octahedral Al species are converted to Al‐MOF. TGA analysis shows that 32 % Al of H‐Beta is converted to Al‐MOF. Furthermore, NH3 TPD analysis shows that most of the weak acid sites disappear but strong acid sites are preserved suggesting the utilization of weakly bound Al species of H‐Beta in the growth of Al‐MOF. The synthesis strategy is successfully demonstrated using H‐Beta, H‐ZSM‐5, and H‐Y zeolites for the growth of MIL‐53 and MIL‐96 MOFs from the zeolite matrix. This synthesis strategy enables application‐based engineering of the framework structures, functionality, and porosity of the materials.  相似文献   

15.
Diffusion limitation in micropores of zeolites leads to a demand for optimization of zeolite morphology and/or porosity. However, tailoring crystallization processes to realize targeted morphology/porosity is a major challenge in zeolite synthesis. On the basis of previous work on the salt‐aided, seed‐induced route, the template effect of seeds on the formation of micropores, mesopores and even macropores was further explored to selectively achieve desired hierarchical architectures. By carefully investigating the crystallization processes of two typical samples with distinct crystal morphologies, namely, 1) nanocrystallite‐oriented self‐assembled ZSM‐5 zeolite and 2) enriched intracrystal mesoporous ZSM‐5 zeolite, a detailed mechanism is proposed to clarify the role of silicalite‐1 seeds in the formation of diverse morphologies in a salt‐rich heterogeneous system, combined with the transformation of seed‐embedded aluminosilicate gel. On the basis of these conclusions, the morphologies/porosities of products were precisely tailored by deliberately adjusting the synthesis parameters (KF/Si, tetrapropylammonium bromide/Si and H2O/Si ratios and type of organic template) to regulate the kinetics of seed dissolution and seed‐induced recrystallization. This work may not only provide a practical route to control zeolite crystallization for tailoring crystal morphology, but also expands the knowledge of crystal growth mechanisms in a heterogeneous system.  相似文献   

16.
气固相同晶取代法制备Ti-ZSM-5及其催化性能的研究   总被引:5,自引:0,他引:5  
以B-ZSM-5沸石为母体,经过盐酸洗涤脱硼后,采用气固相同晶取代法制备了Ti-ZSM-5沸石.考察了制备条件如反应温度、反应时间和载气流速等对产品沸石中钛物种的配位状态和含量的影响.发现进入Ti-ZSM-5骨架中的钛含量存在一个极限值.FT-IR、UV-Vis表征技术和丙烯环氧化反应结果表明:不同气固相反应条件下制备的Ti-ZSM-5沸石具有不同的物化性质.骨架钛含量高而非骨架钛含量低的钛沸石具有较高的丙烯环氧化催化活性.  相似文献   

17.
1 INTRODUCTIONZeolites,anextraordinaryclassofadvancedinorganicmaterials,areattractingincreasingattentionowingtotheirionexchange,molecularsievingandshapeselectivecatalyticproperties.ThemediumporezeolitespresentingtheMFItopology(silicalite,ZSM5and…  相似文献   

18.
高度隔离过渡金属催化剂及其烯烃环氧化研究   总被引:4,自引:0,他引:4  
李灿 《催化学报》2001,22(5):479-483
 介绍了过渡金属杂原子分子筛的骨架杂原子表征、用离子注入法和化学嫁接法制备高度隔离过渡金属催化剂及其催化烯烃环氧化研究的结果.基于共振拉曼原理,用紫外共振拉曼光谱明确鉴别了TS-1,Fe-ZSM-5和V-MCM-41等分子筛中的骨架杂原子.用离子注入法和化学嫁接法制得具有高度隔离过渡金属离子的非杂原子分子筛催化剂.烯烃环氧化反应结果表明,所制得的催化剂显示出优良的催化性能.  相似文献   

19.
The effect of the isomorphous substitution of some of the Si atoms in ZSM‐5 by Ge atoms on the Brønsted acid strength has been investigated by i) DFT calculations on cluster models of the formula ((HO)3SiO)3‐Al‐O(H)‐T‐(OSi(OH)3)3, with T=Si or Ge, and ((HO)3SiO)3‐Al‐O(H)‐Si‐(OGe(OH)3)(OSi(OH)3)2, ii) a 31P NMR study of zeolite samples contacted with trimethyl phosphine oxide probe molecules and iii) a X‐ray photoelectron spectroscopy (XPS) study of ZSM‐5 and Ge‐ZSM‐5 samples. The calculations reveal that the effect of Ge incorporation on the framework acidity strongly depends on the degree of substitution and on the exact T‐atom positions that are occupied by Ge. High Ge concentrations allow for enhanced stabilisation of the deprotonated Ge‐ZSM‐5 through structural relaxation, resulting in a slightly higher acidity as compared to ZSM‐5. This structural relaxation is not achievable in Ge‐ZSM‐5 with a low Ge content, which therefore has a slightly lower acidity than ZSM‐5. The NMR study indicates no difference between the Brønsted acidity of ZSM‐5(47) and Ge(0.09)ZSM‐5(36). Instead, evidence for the presence of a substantial amount of Ge? OH groups in the Ge‐containing samples was obtained from the NMR results, which is consistent with earlier FTIR studies. The XPS results do not point to an effect of Ge on the framework acidity of ZSM‐5(47), instead, the results can be best interpreted by assuming the presence of additional Ge? OH and Si? OH groups near the surface of the Ge(0.08)ZSM‐5(47) sample.  相似文献   

20.
Non‐oxidative dehydroaromatization of methane (MDA) is a promising catalytic process for direct valorization of natural gas to liquid hydrocarbons. The application of this reaction in practical technology is hindered by a lack of understanding about the mechanism and nature of the active sites in benchmark zeolite‐based Mo/ZSM‐5 catalysts, which precludes the solution of problems such as rapid catalyst deactivation. By applying spectroscopy and microscopy, it is shown that the active centers in Mo/ZSM‐5 are partially reduced single‐atom Mo sites stabilized by the zeolite framework. By combining a pulse reaction technique with isotope labeling of methane, MDA is shown to be governed by a hydrocarbon pool mechanism in which benzene is derived from secondary reactions of confined polyaromatic carbon species with the initial products of methane activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号