首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Planar luminogens have encountered difficulties in overcoming intrinsic aggregation‐caused emission quenching by intermolecular π‐π stacking interactions. Although excited‐state double‐bond reorganization (ESDBR) can guide us on designing planar aggregation‐induced emission (AIE) luminogens (AIEgens), its mechanism has yet been elucidated. Major challenges in the field include methods to efficiently restrict ESDBR and enhance AIE performance without using bulky substituents (e.g., tetraphenylethylene and triphenylamine). In this study, we rationally developed fluoro‐substituent AIEgens with stronger intermolecular H‐bonding interaction for restricted molecular motions and increased crystal density, leading to decreased nonradiative decay rate by one order of magnitude. The adjusted ESDBR properties also show a corresponding response to variation in viscosity. Furthermore, their aggregation‐induced reactive oxygen species (ROS) generations have been discovered. The application of such planar AIEgen in treating multidrug‐resistant bacteria has been demonstrated in a mouse model. The relationship between ROS generation and distinct E/Z‐configurational stacking behaviors have been further understood, providing a design principle for synthesizing planar AIEgen‐based photosensitizers.  相似文献   

2.
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation‐induced emission gold clustoluminogens (AIE‐Au) to achieve efficient low‐dose X‐ray‐induced photodynamic therapy (X‐PDT) with negligible side effects. The aggregates of glutathione‐protected gold clusters (GCs) assembled through a cationic polymer enhanced the X‐ray‐excited luminescence by 5.2‐fold. Under low‐dose X‐ray irradiation, AIE‐Au strongly absorbed X‐rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X‐ray‐induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE‐Au effectively triggered the generation of reactive oxygen species with an order‐of‐magnitude reduction in the X‐ray dose, enabling highly effective cancer treatment.  相似文献   

3.
Bio‐orthogonal tumor labeling is more effective in delivering imaging agents or drugs to a tumor site than active targeting strategy owing to covalent ligation. However, to date, tumor‐specific imaging through bio‐orthogonal labeling largely relies on body clearance to differentiate target from the intrinsic probe signal owing to the lack of light‐up probes for in vivo bio‐orthogonal labeling. Now the first light‐up probe based on a fluorogen with aggregation‐induced emission for in vivo bio‐orthogonal fluorescence turn‐on tumor labeling is presented. The probe has low background fluorescence in aqueous media, showing negligible non‐specific interaction with normal tissues. Once it reacts with azide groups introduced to tumor cells through metabolic engineering, the probe fluorescence is lightened up very quickly, enabling rapid tumor‐specific imaging. The photosensitizing ability was also used to realize effective image‐guided photodynamic tumor therapy.  相似文献   

4.
5.
Fluorescent imaging techniques have attracted much attention as a powerful tool to realize the visualization of structural and morphological evolution of various materials. However, the traditional fluorescent dyes usually suffered from aggregation‐caused quenching, which severely limits the visualization results. In contrast, aggregation‐induced emission (AIE) molecules with high quantum yields in the condensed state showed great opportunities for imaging techniques. In this feature article, recent progresses in visualization with AIE molecules are discussed. Assembly processes including crystallization, gelation process, and dissipative assembly have been observed. To better study information obtained regarding the processes, visualization during reactions, phase transitions, and molecular motions are successfully presented. Based on these successes, AIE molecules were further applied for phase recognition, macro‐dispersion evaluation, and damage detection. Finally, we also present the outlook and perspectives, in our opinion, for the development of visualization by AIE molecules.  相似文献   

6.
Alkaline phosphatase (ALP) is associated with many diseases, and its accurate detection is of great significance. Fluorescent compounds with aggregation‐induced emission (AIE) feature show beneficial advantages for serving as fluorescent probes. Herein, an AIE‐active “turn on” probe for ALP detection was synthesized through incorporating a strong electron‐withdrawing group (cyano) in the middle and the recognition moiety phosphate group at the end, thereby rendering a D–A–D structure with a relatively high conjugation degree and good water solubility. It was found that the probe TPE‐CN‐pho is highly sensitive to ALP in aqueous solution. In the presence of ALP, the hydrophilic phosphate group on the probe is rapidly removed, resulting in a decrease in water solubility and subsequent formation of aggregates, thereby achieving aggregation‐induced emission. Moreover, the probe TPE‐CN‐pho has also been successfully applied to imaging ALP in living cells.  相似文献   

7.
A novel fluorescent sensor based on tetraphenylethene (TPE) modified with 2,6‐pyridinedicarboxylic acid (PDA) that shows aggregation‐induced emission (AIE) characteristics for thorium recognition with remarkable fluoresence enhancement response has been synthesized. This sensor is capable of visually distinguishing Th4+ among lanthanides, transition metals, and alkali metals under UV light. Th4+ can be detected by the naked eye at ppb levels owing to the AIE phenomenon. The sensor showed high selectivity for Th4+ compared to all other metals tested, and this recognition displayed good anti‐interference qualities. This study represents the first application of a AIE fluorescence sensor in actinide metal recognition and it has potential applications in environmental systems for thorium ion detection.  相似文献   

8.
N‐Benzyl aroyl‐S,N‐ketene acetals can be readily synthesized by condensation of aroyl chlorides and N‐benzyl 2‐methyl benzothiazolium salts in good to excellent yields, yielding a library of 35 chromophores with bright solid‐state emission and aggregation‐induced emission characteristics. Varying the substituent from electron‐donating to electron‐withdrawing enables the tuning of the solid‐state emission color from deep blue to red.  相似文献   

9.
The design, synthesis and aggregation‐induced emission properties of a new series of triarylborane–oligothiophene–dicyanovinyl (DCV) conjugates 4 – 6 (A–D–A’ type molecular configuration) are reported. The optical properties of 4 – 6 can be modulated by judiciously varying the number of thiophene units between electron deficient boryl and dicyanovinyl units. Compound 6 with terthiophene spacer showed highly red‐shifted absorption and emission compared to 5 and 4 with bithiophene and monothiophene spacers, respectively. Compounds 5 and 6 show aggregation‐induced emission enhancement in water/THF mixtures. Compounds 5 and 6 also showed solvent viscosity dependent emission characteristics. All the three compounds show distinct optical responses for small anions such as fluoride and cyanide. Filter paper strips coated with compounds 5 and 6 can detect F? and CN? in aqueous media with different colorimetric responses.  相似文献   

10.
In this contribution, we present the synthesis and self‐assembly of alkylated thioethers with interesting photophysical properties. To this end, the emission, absorption and excitation spectra in organic solvents and as aggregates in water were measured as well as the corresponding photoluminescence quantum yields and lifetimes. The aggregates in aqueous media were visualized and measured using transmission electron microscopy. Besides that, crystal structures of selected compounds allowed a detailed discussion of the structure–property relationship. Furthermore, the mesomorphic behavior was investigated using polarized optical microscopy (POM) as well as differential scanning calorimetry (DSC).  相似文献   

11.
Activatable photosensitizers (PSs) have been widely used for the simultaneous fluorescence imaging and photodynamic ablation of cancer cells. However, the ready aggregation of traditional PSs in aqueous media can lead to fluorescence quenching as well as reduced phototoxicity even in the activated form. We have developed a series of PSs that show aggregation‐enhanced emission and phototoxicity and thus the exact opposite behavior to that of previously reported PSs. We further developed a dual‐targeted enzyme‐activatable bioprobe based on the optimized photosensitizer and describe simultaneous light‐up fluorescence imaging and activated photodynamic therapy for specific cancer cells. The design of smart probes should thus open new opportunities for targeted and image‐guided photodynamic therapy.  相似文献   

12.
Bioorthogonal turn‐on probes have been widely utilized in visualizing various biological processes. Most of the currently available bioorthogonal turn‐on probes are blue or green emissive fluorophores with azide or tetrazine as functional groups. Herein, we present an alternative strategy of designing bioorthogonal turn‐on probes based on red‐emissive fluorogens with aggregation‐induced emission characteristics (AIEgens). The probe is water soluble and non‐fluorescent due to the dissipation of energy through free molecular motion of the AIEgen, but the fluorescence is immediately turned on upon click reaction with azide‐functionalized glycans on cancer cell surface. The fluorescence turn‐on is ascribed to the restriction of molecular motion of AIEgen, which populates the radiative decay channel. Moreover, the AIEgen can generate reactive oxygen species (ROS) upon visible light (λ=400–700 nm) irradiation, demonstrating its dual role as an imaging and phototherapeutic agent.  相似文献   

13.
Three meso‐ester boron dipyrromethene (BODIPY) dyes have been synthesized and functionalized with aggregation‐induced emission (AIE)‐active tetraphenylethene or triphenylethene moieties. It was found that functionalizing at the different positions of the BODIPY core resulted in the final dye having different emission properties in response to aggregation: from aggregation‐induced quenching (ACQ) to being AIE active. X‐ray crystallographic analysis was thus performed to provide an explanation for these differences.  相似文献   

14.
Precipitation polymerization is becoming increasingly popular in energy, environment and biomedicine. However, its proficient utilization highly relies on the mechanistic understanding of polymerization process. Now, a fluorescence self‐reporting method based on aggregation‐induced emission (AIE) is used to shed light on the mechanism of precipitation polymerization. The nucleation and growth processes during the copolymerization of a vinyl‐modified AIEgen, styrene, and maleic anhydride can be sensitively monitored in real time. The phase‐separation and dynamic hardening processes can be clearly discerned by tracking fluorescence changes. Moreover, polymeric fluorescent particles (PFPs) with uniform and tunable sizes can be obtained in a self‐stabilized manner. These PFPs exhibit biolabeling and photosensitizing abilities and are used as superior optical nanoagents for photo‐controllable immunotherapy, indicative of their great potential in biomedical applications.  相似文献   

15.
Aggregation‐induced emission (AIE) has attracted considerable interest over the last twenty years. In contrast to the large number of available reviews focusing specifically on AIE, this Essay discusses the AIE phenomenon from a broader perspective, with an emphasis on early observations related to AIE made long before the term was coined. Illustrative examples are highlighted from the 20th century where fluorescence enhancement upon rigidification of dyes in viscous or solid environments or J‐aggregate formation was studied. It is shown that these examples already include typical AIE luminogens such as tetraphenylethylene (TPE) as well as stilbenes and oligo‐ or polyphenylenevinylenes and ‐ethynylenes, which became important fluorescent solid‐state materials in OLED research in the 1990s. Further examples include cyanine dyes such as thiazole orange (TO) or its dimers (TOTOs), which have been widely applied as molecular probes in nucleic acid research. The up to 10 000‐fold fluorescence enhancement of such dyes upon intercalation into double‐stranded DNA, attributable to the restricted intramolecular motion (RIM) concept, afforded commercial products for bioimaging and fluorescence sensing applications already in the early 1990s.  相似文献   

16.
The mechanism of aggregation‐induced emission, which overcomes the common aggregation‐caused quenching problem in organic optoelectronics, is revealed by monitoring the real time structural evolution and dynamics of electronic excited state with frequency and polarization resolved ultrafast UV/IR spectroscopy and theoretical calculations. The formation of Woodward–Hoffmann cyclic intermediates upon ultraviolet excitation is observed in dilute solutions of tetraphenylethylene and its derivatives but not in their respective solid. The ultrafast cyclization provides an efficient nonradiative relaxation pathway through crossing a conical intersection. Without such a reaction mechanism, the electronic excitation is preserved in the molecular solids and the molecule fluoresces efficiently, aided by the very slow intermolecular charge and energy transfers due to the well separated molecular packing arrangement. The mechanisms can be general for tuning the properties of chromophores in different phases for various important applications.  相似文献   

17.
We present spatiotemporal control of aggregation‐induced emission enhancement (AIEE) of a protonated tetraphenylethene derivative by optical manipulation. A single submicrometer‐sized aggregate is initially confined by laser irradiation when its fluorescence is hardly detectable. The continuous irradiation of the formed aggregate leads to sudden and rapid growth, resulting in bright yellow fluorescence emission. The fluorescence intensity at the peak wavelength of 540 nm is tremendously enhanced with growth, meaning that AIEE is activated by optical manipulation. Amazingly, the switching on/off of the activation of AIEE is arbitrarily controlled by alternating the laser power. This result means that optical manipulation increases the local concentration, which overcomes the electrostatic repulsion between the protonated molecules, namely, optical manipulation changes the aggregate structure. The dynamics and mechanism in AIEE controlled by optical manipulation will be discussed from the viewpoint of molecular conformation and association depending on the laser power.  相似文献   

18.
Anionic surfactants are widely used in daily life and industries, but their residues can cause serious damage to the environment. The current detection methods for anionic surfactants suffer from various limitations and a new detection strategy is highly desirable. Based on 2‐(2‐hydroxyphenyl)benzothiazole fluorogen with aggregation‐induced emission characteristics, we have developed a fluorescent probe HBT‐C18 for selective and sensitive detection of anionic surfactants. By in situ formation of catanionic aggregates or micelles with anionic surfactants, the emission intensity of the HBT‐C18 probe can increase with increasing keto/enol emission ratio through restriction of intramolecular motion and excited‐state intramolecular proton‐transfer mechanisms. The probe can also be used for wash‐free imaging of bacteria enveloped by a negatively charged outer membrane. The results of this study provide a new strategy for sensitive detection of anionic surfactants and wash‐free bacterial imaging.  相似文献   

19.
Unprecedented dual aggregation‐induced emission (AIE) behavior based on a steric‐hindrance photochromic system is presented, with incorporation one or two bulky aryl groups, resulting in different flexibleness. The dual AIE behavior of open and closed isomers can be explained by restriction of intramolecular rotation (RIR), restriction of intramolecular vibration (RIV), and intermolecular stacking. The large bulky benzothiophene causes restricted rotation, enhancing the emission of open form in solution and weak π–π molecular packing, thereby efficiently enhancing the luminescence performance in the solid state. With incorporation of two large bulky benzothiophene groups, BBTE possesses the most outstanding AIE activity, undergoing highly efficient and reversible off‐to‐on fluorescence in film upon alternating UV and visible light irradiation along with excellent fatigue resistance. The off‐to‐on fluorescent photoswitch is successfully established in super resolution imaging.  相似文献   

20.
The concept of aggregation‐induced emission (AIE) has opened new opportunities in many research fields. Motivated by the unique feature of AIE fluorogens (AIEgens), during the past decade, many AIE molecular probes and AIE nanoparticle (NP) probes have been developed for sensing, imaging and theranostic applications with excellent performance outperforming conventional fluorescent probes. This Review summarizes the latest advancement of AIE molecular probes and AIE NP probes and their emerging biomedical applications. Special focus is to reveal how the AIE probes are evolved with the development of new multifunctional AIEgens, and how new strategies have been developed to overcome the limitations of traditional AIE probes for more translational applications via fluorescence imaging, photoacoustic imaging and image‐guided photodynamic/photothermal therapy. The outlook discusses the challenges and future opportunities for AIEgens to advance the biomedical field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号