首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Engineering biomaterials with integrin‐binding activity is a very powerful approach to promote cell adhesion, modulate cell behavior, and induce specific biological responses at the surface level. The aim of this Review is to illustrate the evolution of surface‐coating molecules in this field: from peptides and proteins with relatively low integrin‐binding activity and receptor selectivity to highly active and selective peptidomimetic ligands. In particular, we will bring into focus the difficult challenge of achieving selectivity between the two closely related integrin subtypes αvβ3 and α5β1. The functionalization of surfaces with such peptidomimetics opens the way for a new generation of highly specific cell‐instructive surfaces to dissect the biological role of integrin subtypes and for application in tissue engineering and regenerative medicine.  相似文献   

5.
A preparatively useful one‐step transformation of γ,γ‐disubstituted α‐formyl‐γ‐lactones into trisubstituted γ,δ‐unsaturated aldehydes is described, by means of catalytic amounts of either AcOH or AcOEt in the vapor phase over a glass support. A mechanistic rationale is proposed.  相似文献   

6.
In this paper is described an unreported method employing α‐alkenyl β‐ketoamides as starting material to give 2,3‐dihydrofurans, precursors of substituted furans.  相似文献   

7.
8.
9.
10.
A concise protocol for the synthesis of α‐methylene‐β‐hydroxy‐γ‐carboxy‐γ‐lactams has been described via alkylation of amino acid derived iminoesters with α‐bromomethylmethacrylate, followed by allylic hydroxylation. All the synthesized compounds have been evaluated for their cytotoxicity on multiple myeloma cancer cell lines.  相似文献   

11.
12.
A concise synthesis of α‐benzylidene‐γ‐methyl‐γ‐butyrolactones 5a – g from substituted benzaldehydes is described. Compounds 1a – g on reaction with phosphorane 2 , provide the pentenoates 3a – g , which can be hydrolyzed to the acids 4a – g . The latter are cyclized to the corresponding butyrolactones 5a – g in excellent yields. The pentenoates 3a – g , on acid catalyzed cyclization, also provide 5a – g in very high yields.  相似文献   

13.
Fully stereodivergent dual‐catalytic α‐allylation of protected α‐amino‐ and α‐hydroxyacetaldehydes is achieved through iridium‐ and amine‐catalyzed substitution of racemic allylic alcohols with chiral enamines generated in situ. The operationally simple method furnishes useful aldehyde building blocks in good yields, more than 99 % ee, and with d.r. values greater than 20:1 in some cases. Additionally, the γ,δ‐unsaturated products can be further functionalized in a stereodivergent fashion with high selectivity and with preservation of stereochemical integrity at the Cα position.  相似文献   

14.
15.
The title compounds, both C23H34O5, are the 5α and 5β configurations of two diacetate epimers. The 5β‐diacetate crystallizes in an hexagonal structure, unusual for steroid molecules. The unit cell has an accessible solvent volume of 358 Å3, responsible for clathrate behaviour. The 5β‐epimer also features some shorter than average bond lengths in the 3α,4β‐acetoxy groups. The conformations of the molecules of both epimers are compared with those obtained through abinitio quantum chemistry calculations. Cohesion of the crystals can be attributed to van der Waals and weak molecular C—H⋯O interactions.  相似文献   

16.
The treatment of a β3‐amino acid methyl ester with 2.2 equiv. of lithium diisopropylamide (LDA), followed by reaction with 5 equiv. of N‐fluorobenzenesulfonimide (NFSI) at ?78° for 2.5 h and then 2 h at 0°, gives syn‐fluorination with high diastereoisomeric excess (de). The de and yield in these reactions are somewhat influenced by both the size of the amino acid side chain and the nature of the amine protecting group. In particular, fluorination of N‐Boc‐protected β3‐homophenylalanine, β3‐homoleucine, β3‐homovaline, and β3‐homoalanine methyl esters, 5 and 9 – 11 , respectively, all proceeded with high de (>86% of the syn‐isomer). However, fluorination of N‐Boc‐protected β3‐homophenylglycine methyl ester ( 16 ) occurred with a significantly reduced de. The use of a Cbz or Bz amine‐protecting group (see 3 and 15 ) did not improve the de of fluorination. However, an N‐Ac protecting group (see 17 ) gave a reduced de of 26%. Thus, a large N‐protecting group should be employed in order to maximize selectivity for the syn‐isomer in these fluorination reactions.  相似文献   

17.
18.
The utility of diphenylphosphonoacetamides [(PhO)2P(O)CH2CONRR′] as Horner–Wadsworth–Emmons reagents was examined with five different patterns of substitution upon the amide nitrogen atom ( 2a : R, R′ = CH2Ph; 2b : R = CH2Ph, R′ = H; 2c : R = Me, R′ = OMe; 2d : R, R′ = Ph; 2e : R, R′ = (CH2)4). The reaction of 2a was found to be Z‐selective for aromatic aldehydes with selectivities up to 95:5. Reagent 2b led to reasonable selectivity for both benzaldehyde (85:15) and 3‐phenylpropionaldehyde (87:13), while 2c was somewhat effective for only the latter alkyl aldehyde (83:17). Compounds 2d and 2e exhibited slightly lower selectivities compared with 2a . © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:515–523, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20054  相似文献   

19.
An efficient synthesis of various α‐halo,α‐allylic aldehydes from α,α‐dihalo ketones using both cyclic (3‐bromocyclohex‐1‐ene zinc bromide and (Z)‐3‐bromocyclobut‐1‐ene zinc bromide) and acyclic (allylzinc bromide and cinnamylzinc bromide) type of allylic organozinc bromide with DMF as base is described. A possible reaction mechanism is also proposed.  相似文献   

20.
SF6 was applied as pentafluorosulfanylation reagent to prepare ethers with a vicinal SF5 substituent through a one‐step method involving photoredox catalysis. This method shows a broad substrate scope with respect to applicable alcohols for the conversion of α‐methyl and α‐phenyl styrenes. The products bear a new structural motif with two functional groups installed in one step. The alkoxy group allows elimination and azidation as further transformations into valuable pentafluorosulfanylated compounds. These results confirm that non‐toxic SF6 is a useful SF5 transfer reagent if properly activated by photoredox catalysis, and toxic reagents are completely avoided. In combination with light as an energy source, a high level of sustainability is achieved. Through this method, the proposed potential of the SF5 substituent in medicinal chemistry, agrochemistry, and materials chemistry may be exploited in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号