首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The introduction of chip-based electrospray (ESI) ion sources into biological mass spectrometry (MS) addressed the fundamental issue of how to analyze minute amounts of complex biological systems. The automation of sample delivery into the MS combined with the chip-based ESI allows for high quality bioanalysis in a high-throughput fashion. These advantages have already been demonstrated in proteomics, direct screening of drugs and drug discovery. As part of our continuing effort to implement automated chip-based mass spectrometry into the field of complex carbohydrate analysis, we hereby report the development of a chipESI MS and MS/MS methodology for the screening of gangliosides. A strategy to characterize a complex ganglioside mixture from human cerebellar tissue, by automated ESIchip-quadrupole time-of-flight (QTOF) MS and MS/MS is presented here. The feasibility of this method, and the general experimental requirements for automated chipESI MS analysis of these carbohydrate species is described.  相似文献   

2.
The application of an ion trap mass spectrometer, usually employed for identification, has been here systematically evaluated for quantitative analysis of various conjugated forms of flavonoids and compared with UV quantification. Three MS methods were tested to assess the potential and limits of the ion trap for quantification of flavonoids: full‐scan experiment MS2, isolated ion experiment MS, and full‐scan experiment MS. The test was performed using nine reference standards of flavonoids with six different aglycones: luteolin, apigenin, hypolaetin, 4′‐O‐methylhypolaetin, isoscutellarein and 4′‐O‐methylisoscutellarein in the form of 7‐O‐glucosides and diglucosides, mono or diacetylated, isolated from Sideritis scardica. The analytical characteristics of the tested MS methods were shown to be comparable to UV with regards to precision and accuracy, and superior for selectivity and sensitivity especially when using extracted ion chromatograms. Detection limits did not differ significantly between the MS methods but were significantly lower than those obtained with UV detection by one order of magnitude. Another issue addressed by these results was the choice of most suitable standard substances for quantification of flavonoids with various substituents attached when using MS. In UV detection, the nature of the aglycone is crucial for the absorbance properties, and various derivatives can be quantified with the available one with the same aglycone. Here, it was shown that in MS detection, one flavone derivative can be quantified using other available derivatives with similar substitution pattern with regards to attached and acetylated sugars, whereas the nature of the aglycone is not crucial. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, we developed a high-resolution tandem mass spectrometry (HR MS) approach to assess presumed changes in gangliosidome of a human hippocampus affected by temporal lobe epilepsy (TLE) in comparison with a normal hippocampus. Gangliosides, membrane glycolipids, are particularly diverse and abundant in the human brain, and participate in ion transport and modulation of neuronal excitability. Changes in structural ganglioside pattern potentially linked to TLE molecular pathogenesis have not been explored in detail. Aiming to characterize TLE-specific gangliosidome, we analyzed the native gangliosides purified from a human hippocampal tissue sample affected by TLE and a control hippocampus using HR MS. Marked differences of ganglioside expression were shown in TLE vs. control, particularly with respect to the sialylation degree of components, discovered as a characteristic feature of TLE. Another major finding is the occurrence of tetrasialofucogangliosides in TLE and species modified by either O-acetylation or CH3COO. Structural analysis by higher-energy collisional dissociation (HCD) MS/MS gave rise to fragmentation patterns implying that the GQ1b (d18:1/18:0) isomer is specifically associated with TLE. Further investigation in a larger sample is needed in order to confirm the discovery of ganglioside structures specifically expressed in human TLE and to provide information on the probable role of gangliosides in the molecular events underlying seizures.  相似文献   

4.
Gangliosides are anionic glycosphingolipids widely distributed in vertebrate tissues and fluids. Their structural and quantitative expression patterns depend on phylogeny and are distinct down to the species level. In milk, gangliosides are exclusively associated with the milk fat globule membrane. They may participate in diverse biological processes but more specifically to host-pathogen interactions. However, due to the molecular complexities, the analysis needs extensive sample preparation, chromatographic separation, and even chemical reaction, which makes the process very complex and time-consuming. Here, we describe a rapid profiling method for bovine and human milk gangliosides employing matrix-assisted desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Prior to the analyses of biological samples, milk ganglioside standards GM3 and GD3 fractions were first analyzed in order to validate this method. High mass accuracy and high resolution obtained from MALDI FTICR MS allow for the confident assignment of chain length and degree of unsaturation of the ceramide. For the structural elucidation, tandem mass spectrometry (MS/MS), specifically as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) were employed. Complex ganglioside mixtures from bovine and human milk were further analyzed with this method. The samples were prepared by two consecutive chloroform/methanol extraction and solid phase extraction. We observed a number of differences between bovine milk and human milk. The common gangliosides in bovine and human milk are NeuAc-NeuAc-Hex-Hex-Cer (GD3) and NeuAc-Hex-Hex-Cer (GM3); whereas, the ion intensities of ganglioside species are different between two milk samples. Kendrick mass defect plot yields grouping of ganglioside peaks according to their structural similarities. Gangliosides were further probed by tandem MS to confirm the compositional and structural assignments. We found that only in human milk gangliosides was the ceramide carbon always even numbered, which is consistent with the notion that differences in the oligosaccharide and the ceramide moieties confer to their physiological distinctions.  相似文献   

5.
Abstract

Caudate nucleus (CN) is a specialized part of the dorsal striatum of each brain hemisphere involved in numerous cognitive processes. Caudate dysfunctions are associated with Alzheimer’s, Parkinson’s and Huntington’s disease, autism, and even schizophrenia. Most of the studies upon CN and related diseases were conducted using neuroimaging techniques, which, in some instances have reached contradictory conclusions. This state-of-the-art technique triggered the development of methods able to provide information at the molecular level. In this context, here we have implemented high resolution (HR) mass spectrometry (MS) and multistage MS (MSn), for mapping and structural analysis of gangliosides in human CN. Due to the high resolution and mass accuracy (average value: 1.5?ppm), 100 distinct species, of which 90 were di-, tri-, tetra-, and pentasialylated and 17 fucosylated and acetylated and, for the first time, species modified by CH3COO?, were reliably identified in the native CN ganglioside extract. Additionally, two structurally-relevant species, GD2 (d18:1/18:0) and GD2 (d18:1/16:2), were characterized with MS2–MS3 by collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD). The set of data collected by high-resolution mass spectrometry (HR-MS) revealed a much higher complexity of the CN ganglioside pattern than ever reported, and the species associated to this brain region, potentially implicated in many of its functions.  相似文献   

6.
Considering the valuable information provided by glycosphingolipids as molecular markers and the limited data available for their detection and characterization in patients suffering from Type 2 diabetic kidney disease (DKD), we developed and implemented a superior method based on high-resolution (HR) mass spectrometry (MS) and tandem MS (MS/MS) for the determination of gangliosides in the urine of DKD patients. This study was focused on: (i) testing of the HR MS and MS/MS feasibility and performances in mapping and sequencing of renal gangliosides in Type 2 DM patients; (ii) determination of the changes in the urine gangliosidome of DKD patients in different stages of the disease—normo-, micro-, and macroalbuminuria—in a comparative assay with healthy controls. Due to the high resolution and mass accuracy, the comparative MS screening revealed that the sialylation status of the ganglioside components; their modification by O-acetyl, CH3COO, O-fucosyl, and O-GalNAc; as well as the composition of the ceramide represent possible markers for early DKD detection, the assessment of disease progression, and follow-up treatment. Moreover, structural investigation by MS/MS demonstrated that GQ1d(d18:1/18:0), GT1α(d18:1/18:0) and GT1b(d18:1/18:0) isomers are associated with macroalbuminuria, meriting further investigation in relation to their role in DKD.  相似文献   

7.
We report here on a preliminary investigation of ganglioside composition and structure in human hemangioma, a benign tumor in the frontal cortex (HFC) in comparison to normal frontal cortex (NFC) tissue using for the first time advanced mass spectrometric methods based on fully automated chip-nanoelectrospray (nanoESI) high-capacity ion trap (HCT) and collision-induced dissociation (CID). The high ionization efficiency, sensitivity and reproducibility provided by the chip-nanoESI approach allowed for a reliable MS-based ganglioside comparative assay. Unlike NFC, ganglioside mixture extracted from HFC was found dominated by species of short glycan chains exhibiting lower overall sialic acid content. In HFC, only GT1 (d18:1/20:0), and GT3 (d18:1/25:1) polysialylated species were detected. Interestingly, none of these trisialylated forms was detected in NFC, suggesting that such components might selectively be associated with HFC. Unlike the case of previously investigated high malignancy gliosarcoma, in HFC one modified O-Ac-GD2 and one modified O-Ac-GM4 gangliosides were observed. This aspect suggests that these O-acetylated structures could be associated with cerebral tumors having reduced malignancy grade. Fragmentation analysis by CID in MS2 mode using as precursors the ions corresponding to GT1 (d18:1/20:0) and GD1 (d18:1/20:0) provided data corroborating for the first time the presence of the common GT1a and GT1b isomers and the incidence of unusual GT1c and GT1d glycoforms in brain hemangioma tumor.   相似文献   

8.
A method for generation of novel fluorocarbon derivatives of glycosphingolipids (GSLs) with high affinity for fluorocarbon phases has been developed, and their potential applications to mass spectrometry (MS)‐based methodologies for glycosphingolipidomics have been investigated. Sphingolipid ceramide N‐deacylase (SCDase) is used to remove the fatty acid from the ceramide moiety, after which a fluorocarbon‐rich substituent (F‐Tag) is incorporated at the free amine of the sphingoid. In initial trials, a neutral GSL, globotriaosylceramide (Gb3Cer), three purified bovine brain gangliosides, and four fungal glycosylinositol phosphorylceramides (GIPCs) were de‐N‐acylated, derivatized by prototype F‐Tags, and recovered by solid phase extraction on fluorocarbon‐derivatized silica (F‐SPE). The efficacy of SCDase treatment of GIPCs was here demonstrated for the first time. Compatibility with subsequent per‐N,O‐methylation was established for the F‐tagged Gb3 Cer and purified gangliosides, and extensive mass spectra (MS1 and MS2) consistent with all of the expected products were acquired. The potential use of F‐tagged derivatives for a comprehensive MS based profiling application was then demonstrated on a crude ganglioside mixture extracted from bovine brain. Finally, a simple trial in microarray format demonstrated fixation of F‐tagged GM1 ganglioside to a fluorous glass surface, with the glycan intact and available for interaction with a fluorescent derivative of cholera toxin B chain. The methods described thus provide a new avenue for rapid GSL recovery or cleanup, potentially compatible with a variety of platforms for mass spectrometric profiling and structure analysis, as well as parallel analysis of functional interactions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Kaempferol 3‐Oβ‐glucopyranoside, kaempferol 3‐Oβ‐galactopyranoside and higher glycosides of these two flavonoids with α‐rhamnose at C‐2 and/or C‐6 of the primary sugar were studied by negative ion electrospray ionisation and serial mass spectrometry in a three‐dimensional (3D) ion trap mass spectrometer. Kaempferol 3‐Oβ‐glucopyranoside and kaempferol 3‐Oα‐rhamnopyranosyl(1→6)‐β‐glucopyranoside could be distinguished from their respective galactose analogues by differences in the ratio of the radical aglycone ion [Y0 – H]?? to the rearrangement aglycone ion Y following MS/MS of the deprotonated molecules. Kaempferol 3‐O‐rhamnopyranosyl(1→2)‐β‐glucopyranoside and kaempferol 3‐Oα‐rhamnopyranosyl(1→2)[α‐rhamnopyranosyl(1→6)]‐β‐glucopyranoside could be distinguished from their respective galactose analogues by differences in the product ion spectra of the [(M – H) – rhamnose]? ion following serial mass spectrometry. In the triglycoside, it was deduced that this ion resulted from the loss of the rhamnose substituted at 2‐OH of the primary sugar by observing that MS/MS of deprotonated kaempferol 3‐Oβ‐glucopyranosyl(1→2)[α‐rhamnopyranosyl(1→6)]‐β‐glucopyranoside showed the loss of glucose and not rhamnose. Thus the class of sugar (hexose, deoxyhexose, pentose) at C‐2 and C‐6 of the primary sugar can be determined. These observations aid the assignment of kaempferol 3‐O‐glycosides, having glucose or galactose as the primary glycosidic sugar, in LC/MS analyses of plant extracts, and this can be done with reference to only a few standards. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
《Analytical letters》2012,45(6):1036-1049
Two native ganglioside mixtures from normal human fetal cerebellum in the 15th (Cc15) and 40th (Cc40) gestational week were subjected to NanoMate high capacity ion trap (HCT) mass spectrometric (MS) and collision induced dissociation (CID) tandem MS (MS2) analysis under thoroughly optimized experimental conditionns. An total of 56 different species were identified in Cc15 and 54 in Cc40. By employing CID MS2 molecular ions, related GD1 (d18:1/20:0) and GM2 (d18:1/19:0) species were structurally characterized in a high throughput mode. The method provided elevated ionization efficiency, high speed of analysis, almost 100% reproducibility at sample consumption per experiment situated in the femtomole range.  相似文献   

11.
Neolacto‐series ganglioside sialylparagloboside (SPG) is a ganglioside species present in various human tissues, and used in many important studies. In this study, four ganglioside analogs, GM3, GD3, SPG, and NeuAc‐Gal‐GlcNAc‐Gal‐GlcNAc‐Gal‐Glc‐Cer, were synthesized by the saccharide‐primer method using MDCK cells and β‐lactoside primer with different aglycons. As compared to former methods for producing SPG, the primer method was rapid and convenient. Moreover, the yield of SPG was much higher than that obtained by former methods. The production of gangliosides with an azido group in the aglycon moiety was also achieved by using MDCK cells.  相似文献   

12.
Flavonoid O‐glycosides are a ubiquitous and important group of plant natural products in which a wide variety of sugars are O‐linked to an aglycone. Determining the identity of the sugars, and the manner in which they are linked, by mass spectrometry alone is challenging. To improve the identification of common O‐linked di‐ and trisaccharides when analysing mixtures of flavonoid O‐glycosides by liquid chromatography/mass spectrometry (LC/MS), the fragmentation of electrosprayed sodium adducts in an ion trap mass spectrometer was investigated. The sodium adducts [M + Na]+ of kaempferol 3‐O‐glycosides generated sodiated glycosyl groups by the neutral loss of kaempferol. The product ion spectra of these sodiated glycosyl groups differed between four isomeric kaempferol 3‐O‐rhamnosylhexosides and four isomeric kaempferol 3‐O‐glucosylhexosides in which the primary hexose was either glucose or galactose and bore the terminal glucose or rhamnose at either C‐2 or C‐6. Fragmentation of sodiated glycosyl groups from linear O‐triglucosides and branched O‐glucosyl‐(1 → 2)‐[rhamnosyl‐(1 → 6)]‐hexosides produced sodiated disaccharide residues, and the product ion spectra of these ions assisted the identification of the complete sugar. The product ion spectra of the sodiated glycosyl groups were consistent among flavonoid O‐glycosides differing in the position at which the sugar was O‐linked to the aglycone, and the nature of the aglycone. The abundance of sodiated species was enhanced by application of a pre‐trap collision voltage, without the need to dope with salt, allowing automated LC/MS methods to be used to identify the glycosyl groups of common flavonoid O‐glycosides, such as rutinosides, robinobiosides, neohesperidosides, gentiobiosides and sophorosides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Gangliosides are particularly abundant in the nervous system (NS) where their pattern and structure in a certain milieu or a defined region exhibit a pronounced specificity. Since gangliosides are useful biomarkers for diagnosis of NS ailments, a clear-cut mapping of individual components represents a prerequisite for designing ganglioside-based diagnostic procedures, treatments, or vaccines. These bioclinical aspects and the high diversity of ganglioside species claim for development of specific analytical strategies. This review summarizes the state-of-the-art in the implementation of separation techniques and microfluidics coupled to MS, which have contributed significantly to the advancement of the field. In the first part, the review discusses relevant approaches based on HPLC MS and CE coupled to ESI MS and their applications in the characterization of gangliosides expressed in healthy and diseased NS. A considerable section is dedicated to microfluidics MS and ion mobility separation MS, developed for the study of brain gangliosidome and its changes triggered by various factors, as well as for ganglioside biomarker discovery in neurodegenerative diseases and brain cancer. In the last part of the review, the benefits and perspectives in ganglioside research of these high-performance techniques are presented.  相似文献   

14.
The development of fluorescent probes to image forces in cells is an important challenge in chemistry and biology. Planarizable push‐pull probes have been introduced recently for this purpose. To provide most valuable information on forces in complex systems, these mechanosensitive ‘flipper’ probes will have to be localized by molecular recognition of targets of interest. Here we report fluorescent flippers that selectively recognize gangliosides on the surface of lipid bilayer membranes by formation of dynamic covalent boronate esters. The original flipper probes were equipped with 2‐fluorophenyl boronic acids and benzoboroxoles using consecutive triazole and oxime ligation. Evaluation was done in large unilamellar vesicles composed of EYPC/SM/CL/GM 40:40‐x:20:x to obtain mixed membranes with separate liquid‐disordered (Ld) and ganglioside (GM) containing liquid‐ordered (Lo) domains. With increasing GM concentration, fluorescence intensities increased and excitation maximum shifted to the red. Deconvolution of the spectra confirmed that these changes originate from a migration of the flipper probes from Ld to Lo domains upon binding to the gangliosides and thus the planarization in the more ordered environment. Control mechanophores without boronic acids failed to show the same response, and fructose partially inhibited the ganglioside sensitivity. These results demonstrate that it is possible to selectively accumulate mechanosensitive flipper probes in Lo domains and, more generally, that probe localization in complex membranes is possible and matters.  相似文献   

15.
Schindler disease is an inherited metabolic disorder caused by the deficient activity of α‐N‐acetylgalactosaminidase enzyme. An accurate diagnosis requires, besides clinical examination, complex and costly biochemical and molecular genetic tests. In the last years, mass spectrometry (MS) based on nanofluidics and high‐resolution instruments has become a successful alternative for disease diagnosis based on the investigation of O‐glycopeptides in patient urine. A complex mixture of glycoforms extracted from the urine of a 3‐year‐old patient was investigated by Orbitrap MS equipped with Nanospray Flex Ion Source in the negative ion mode. For structural characterization of several molecular species, collision‐induced dissociation MS2–MS3 was carried out using collision energy values within 20–60 eV range. By our approach, 39 novel species associated to this condition were identified, among which O‐glycopeptides, free O‐glycans and one structure corresponding to an N‐glycan never characterized in the context of Schindler disease. The experiments conducted at a resolution of 60 000 allowed the discrimination and identification of a total number of 69 different species with an average mass accuracy of 9.87 ppm, an in‐run reproducibility of almost 100%, an experiment‐to‐experiment and day‐to‐day reproducibility of about 95%. This study brings contributions in the diagnosis of Schindler disease through the elucidation of potential biomarker species in urine. Our multistage MS results completed with 39 new glycoforms the inventory of potential biomarker structures associated to Schindler disease. For the first time, an N‐glycan was identified and structurally characterized in Schindler patient urine, which opens new research directions in the field. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A fast, sensitive, and high‐throughput ultra‐HPLC–MS/MS method has been developed and validated for the simultaneous determination of three main active constituents of Euphorbiae pekinensis Radix in rat plasma. After addition of the internal standard, plasma samples were extracted by liquid–liquid extraction with ethyl acetate/isopropanol (1:1, v/v) and separated on a CAPCELL PAK C18 column (100 × 2.0 mm, 2 μm, Shiseido, Japan), using a gradient mobile phase system of methanol/water. The detection of the analytes was performed on a 4000Q UHPLC–MS/MS system with turbo ion spray source in the negative ion and multiple reaction‐monitoring mode. The linear range was 1.0–1000 ng/mL for 3,3′‐di‐O‐methyl ellagic acid‐4′‐Oβ‐d ‐glucopyranoside (i), 1.5–1500 ng/mL for 3,3′‐di‐O‐methyl ellagic acid‐4′‐Oβ‐d ‐xylopyranoside (ii), and 5.0–5000 ng/mL for 3,3′‐di‐O‐methyl ellagic acid (iii). The intra‐ and interday precision and accuracy of all the analytes were within 15%. The extraction recoveries of the three analytes and internal standard from plasma were all more than 80%. The validated method was first successfully applied to the evaluation of pharmacokinetic parameters of compounds 1 , 2 , and 3 in rat plasma after intragastric administration of the Euphorbiae pekinensis Radix extract.  相似文献   

17.
A protocol for negative ion nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (-)nanoESI-FTICR MS, investigation of complex biological mixtures consisting of sialylated or sulfated glycosphingolipids (GSL) expressing high heterogeneity in the ceramide portion is described. Different instrumental and solvent conditions were explored and optimized to promote efficient ionization, reduce the in-source fragmentation and consequently enhance the detection of intact molecular species from complex mixtures. Using the novel optimized (-)nanoESI-FTICR MS protocol, a reliable and detailed compositional fingerprint of the polysialylated ganglioside mixture isolated from human brain was obtained. Sustained off-resonance irradiation collision-induced dissociation mass spectrometry (SORI-CID MS2) was introduced for the first time for structural elucidation of polysialylated gangliosides. Under well-defined conditions, an informative fragmentation pattern of the trisialylated ganglioside GT1 was obtained. The compositional mapping of a complex mixture of sulfated glucuronic acid containing neolacto-series GSLs extracted from bovine Cauda equina provided hard evidence upon previously described components and new structures not identified before by any other analytical method. Negative ion nanoESI-FTICR MS at 9.4 T is shown here to represent a valuable method in glycolipidomics, allowing a high resolution and mass accuracy detection of major and minor GSL glycoforms and identification of known and novel biologically relevant structures.  相似文献   

18.
The purpose of this work is to explore the mass fragment characterization of commonly used drugs through a novel approach, which involves isotope‐selective tandem mass spectrometry (MS/MS). Collision‐induced dissociation (CID) was performed with a low‐resolution linear ion trap mass spectrometer in positive electrospray ionization. Three pharmacologically active ingredients, i.e. omeprazole, meloxicam and brinzolamide, selected as model compounds in their own formulation, were investigated as a sodiated adduct [C17H19N3O3S + Na]+ (omeprazole) and as protonated adducts, [C14H13N3O4S2 + H]+ and [C12H21N3O5S3 + H]+, meloxicam and brinzolamide, respectively. Selecting a narrow window of ±0.5 m/z units, precursor ion fragmentation by CID‐MS/MS of isotopologues A + 0, A + 1 and A + 2 was found very useful to confirm the chemical formula of product ions, thus aiding the establishment of characteristic fragmentation pathways of all three examined compounds. The correctness of putative molecular formula of product ions was easily demonstrated by exploiting the isotope peak abundance ratios (i.e. IF+0/IF+1 and IF+0/IF+2) as simple constraints in low‐resolution MS instrumentations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Mass spectrometry is a common tool for studying the fate of complex organic compound mixtures in oil sands processed water (OSPW), but a comparison of low‐, high‐ (~10 000), and ultrahigh‐resolution (~400 000) instrumentation for this purpose has not previously been made. High‐resolution quadrupole time‐of‐flight mass spectrometry (QTOF MS) and ultrahigh‐resolution Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS), with negative‐ion electrospray ionization, provided evidence for the selective dissipation of components in OSPW. Dissipation of oil sands naphthenic acids (NAs with general formula CnH2n+zO2 where n is the number of carbon atoms, and Z is zero or a negative even number describing the number of rings) was masked (by components such as fatty acids, O3, O5, O6, O7, SO2, SO3, SO4, SO5, SO6, and NO4 species) at low resolution (1000) when using a triple quadrupole mass spectrometer. Changes observed in the relative composition of components in OSPW appear to be due primarily to the presence of plants, specifically cattails (Typha latifolia) and their associated microorganisms. The observed dissipation included a range of heteratomic species containing O2, O3, O4, and O5, present in Athabasca oil sands acid extracts. For the heteratomic O2 species, namely naphthenic acids, an interesting structural relationship suggests that low and high carbon number NAs are dissipated by the plants preferentially, with a minimum around C14/C15. Other heteratomic species containing O6, O7, SO2, SO3, SO4, SO5, SO6, and NO4 appear to be relatively recalcitrant to the cattails and were not dissipated to the same extent in planted systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The fragmentation pathways of lithiated α,β‐unsaturated thioesters with different substituents were investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) in positive ion mode. In mass spectrometry of the α,β‐unsaturated thioesters, Ar‐CH?CH‐CO‐S‐Ph, loss of PhSLi and elimination of a thiophenol were the two major fragmentation reactions of the lithiated molecules. The elemental compositions of all the ions were confirmed by high‐resolution Fourier transform ion cyclotron resonance tandem mass spectrometry (FTICR‐MS/MS). The thioesters studied here were para‐monosubstituted on the phenyl ring of cinnamoyl and the electron‐withdrawing groups favored loss of a thiophenol, whereas the electron‐releasing groups strongly favored the competing reaction leading to the loss of PhSLi to form a cinnamoyl cation, Ar‐CH?CHCO+. The intensity ratios of the two competitive product ions were well correlated with the σ substituent constants. The mechanisms of these two competing routes were further investigated by density functional theory (DFT) calculations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号