首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful molecular mapping technology that offers unbiased visualization of the spatial arrangement of biomolecules in tissue. Although there has been a significant increase in the number of applications employing this technology, the extracellular matrix (ECM) has received little attention, likely because ECM proteins are mostly large, insoluble and heavily cross‐linked. We have developed a new sample preparation approach to enable MALDI IMS analysis of ECM proteins in tissue. Prior to freezing and sectioning, intact tissues are decellularized by incubation in sodium dodecyl sulfate. Decellularization removes the highly abundant, soluble species that dominate a MALDI IMS spectrum while preserving the structural integrity of the ECM. In situ tryptic hydrolysis and imaging of tryptic peptides are then carried out to accommodate the large sizes of ECM proteins. This new approach allows the use of MALDI IMS for identification of spatially specific changes in ECM protein expression and modification in tissue. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Synthetic copolyamides based on aliphatic diamines (1,3-propanediamine and 1,4-butanediamine) and dichlorides of aliphatic carboxylic acids (adipic and sebacic acid dichlorides) were investigated using time-of-flight matrix assisted laser desorption/ionization mass spectrometry. Their mass spectra showed peaks for cationized (Na+ and K+) and protonated (less intense peaks) oligomers with NH2-NH2, NH2-COOH, or COOH-COOH end groups. No cyclic oligomers were detected in the samples. The compositions of oligomers were determined, and the relative reactivities of homologous comonomers in polycondensation were estimated. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1320–1324, July, 2007.  相似文献   

3.
Here we report a simple and fast method for wine fingerprinting based on direct matrix-assisted laser desorption/ionization (MALDI) mass spectrometry analysis of different red wine samples, useful for batch-to-batch analysis and for the detection of key compounds even in trace amounts which may vary from vintage to vintage, and from one treatment to another one. A series of 20 samples from different wines were subjected to MALDI mass spectrometry. We found that 2,5-dihydroxybenzoic acid is far superior with respect to all the matrices tested To the best of our knowledge this is the first application of an effective wine profiling not limited to detection of anthocyanins. More than 80 molecular species were detected. Moreover, qualitative and quantitative differences were observed, owing to the nature and relative abundance of different chemical compounds among the wines.  相似文献   

4.
We investigated the application of a high‐resolution Orbitrap mass spectrometer equipped with an electrospray ionization (ESI) source and a matrix‐assisted laser desorption/ionization‐time‐of‐flight (MALDI‐TOF) mass spectrometer to the metabolite profiling of a model small interfering RNA (siRNA) duplex TSR#34 and compared their functions and capabilities. TSR#34 duplex was incubated in human serum in vitro, and the duplex and its metabolites were then purified by ion exchange chromatography in order to remove the biological matrices. The fraction containing the siRNA duplex and its metabolites was collected and desalted and then subjected to high‐performance liquid chromatography (HPLC) equipped with a reversed phase column. The siRNA and its metabolites were separated into single strands by elevated chromatographic temperature and analyzed using the ESI‐Orbitrap or the MALDI‐TOF mass spectrometer. Using this method, the 5' and/or 3' truncated metabolites of each strand were detected in the human serum samples. The ESI‐Orbitrap mass spectrometer enabled differentiation between two possible RNA‐based sequences, a monoisotopic molecular mass difference which was less than 2 Da, with an intrinsic mass resolving power. In‐source decay (ISD) analysis using a MALDI‐TOF mass spectrometer allowed the sequencing of the RNA metabolite with characteristic fragment ions, using 2,4‐dihydroxyacetophenone (2,4‐DHAP) as a matrix. The ESI‐Orbitrap mass spectrometer provided the highest mass accuracy and the benefit of on‐line coupling with HPLC for metabolite profiling. Meanwhile, the MALDI‐TOF mass spectrometer, in combination with 2,4‐DHAP, has the potential for the sequencing of RNA by ISD analysis. The combined use of these methods will be beneficial to characterize the metabolites of therapeutic siRNA compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Improved resolution for a miniaturized instrument is demonstrated at high masses using a pulsed extraction, 3(") linear time-of-flight (TOF) mass analyzer. This illustrates the utility of a small and simple mass spectrometer for biological/medical analyses. Current and future applications suggested by this instrument include rapid mass spectral reading of oligonucleotides that differ in one base (single nucleotide polymorphisms), distinction of biomarker signatures from different species of bacterial spores (biological weapons detection) and point-of-care instruments for proteomics-based diagnostics. We have incorporated a two-stage, pulsed-extraction design that places the focal plane of the ions at the detector channel plate surface. The ions are accelerated to a total energy of 12 keV to enable detection of high-mass proteins in a design that incorporates a floatable flight tube set at the voltage of the front channel plate of the detector. The resultant elimination of post-acceleration at the detector is intended to improve mass resolution by reducing the difference in arrival times between ions and their neutral products. Resolutions of one part in 1200 at m/z 4500 and one part in 600 at m/z 12 000 have been achieved. Proteins with molecular masses up to 66 000 Da, mixtures of oligonucleotides, and biological spores have all been successfully measured, results that increase the potential use of this TOF analyzer.  相似文献   

6.
采用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS),对四硫富瓦烯化合物进行质谱表征。在所用的实验条件下,样品很容易解吸电离生成单电荷分子离子,得到单同位素分辨的质谱图。26种实际样品的质谱分析结果表明;MALDI-TOF-MS可以比其它质谱方法更有效、更方便地用于此类化合物的质谱分析,解决了此类化合物不易进行质谱鉴定的难题。  相似文献   

7.
Recent research has focused on increasing the evidentiary value of latent fingerprints through chemical analysis. Although researchers have optimized the use of organic and metal matrices for matrix‐assisted laser desorption/ionization‐mass spectrometry imaging (MALDI‐MSI) of latent fingerprints, the use of development powders as matrices has not been fully investigated. Carbon forensic powder (CFP), a common nonporous development technique, was shown to be an efficient one‐step matrix; however, a high‐resolution mass spectrometer was required in the low mass range due to carbon clusters. Titanium oxide (TiO2) is another commonly used development powder, especially for dark nonporous surfaces. Here, forensic TiO2 powder is utilized as a single‐step development and matrix technique for chemical imaging of latent fingerprints without the requirement of a high‐resolution mass spectrometer. All studied compounds were successfully detected when TiO2 was used as the matrix in positive mode, although, generally, the overall ion signals were lower than the previously studied CFP. TiO2 provided quality mass spectrometry (MS) images of endogenous and exogenous latent fingerprint compounds. The subsequent addition of traditional matrices on top of the TiO2 powder was ineffective for universal detection of latent fingerprint compounds. Forensic TiO2 development powder works as an efficient single‐step development and matrix technique for MALDI‐MSI analysis of latent fingerprints in positive mode and does not require a high‐resolution mass spectrometer for analysis.  相似文献   

8.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was applied to the analysis of Ru(OCOCF(3))(2)(CO)(PPh(3))(2), Ru(OCOC(3)F(7))(2)(CO)(PPh(3))(2), Ir(tBuppy)(3) and Ir(ppy)(2)(acac) complexes. A troublesome problem in the MALDI-TOFMS characterization of these metal complexes is the possible replacement of complex ligands by matrix. In this contribution, 10 matrices, ranging from acidic to basic, were investigated: alpha-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), dithranol, 2,4,6-trihydroxyactophenone (THAP), 6-azo-2-thiothymine (ATT), norharman, 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), 4-nitroaniline (NA) and 2-amino-5-nitrophyridine (ANP). With most of the matrices, including the neutral and basic ones, matrix substitution of ligand could clearly be detected. Based on the experimental results, possible mechanisms of matrix substitution were discussed. It was demonstrated that the ligand exchange process might also occur through the gas-phase reactions initiated by laser shots. Among the matrices tested, DCTB was found to be the best one for the complexes that are prone to ligand exchange by matrix.  相似文献   

9.
The detection of water-soluble vitamins B(1), B(2), B(6), B(12) and C by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) was attempted by studying 17 porphyrin matrices. Comparative studies of porphyrin matrices, useful mass spectral window, matrix/analyte molar ratio (M/A), ultraviolet-visible absorption characteristics and quantitative results were made. Most porphyrin matrices provide a useful mass spectral window in the low-mass range. The optimal M/A increases with increasing molecular mass of the vitamin. Vitamin B(12) possesses the highest molecular mass and requires a higher M/A. The presence of hydroxyl or carboxyl groups in the porphyrin is an indicator of a useful MALDI matrix. Vitamins B(2) and B(6) were readily ionized upon irradiation with a 337 nm laser without the use of any porphyrin matrix. Improved linearity and sensitivity of the calibration curves were obtained with samples prepared with a constant M/A. The limits of detection and quantitation are at the picomole level. The results indicate that MALDI-TOFMS with porphyrin matrices is a rapid and viable technique for the detection of low molecular mass water-soluble vitamins.  相似文献   

10.
In pre‐implantation embryos, lipids play key roles in determining viability, cryopreservation and implantation properties, but often their analysis is analytically challenging because of the few picograms of analytes present in each of them. Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) allows obtaining individual phospholipid profiles of these microscopic organisms. This technique is sensitive enough to enable analysis of individual intact embryos and monitoring the changes in membrane lipid composition in the early stages of development serving as screening method for studies of biology and biotechnologies of reproduction. This article introduces an improved, more comprehensive MALDI‐MS lipid fingerprinting approach that considerably increases the lipid information obtained from a single embryo. Using bovine embryos as a biological model, we have also tested optimal sample storage and handling conditions before the MALDI‐MS analysis. Improved information at the molecular level is provided by the use of a binary matrix that enables phosphatidylcholines, sphingomyelins, phosphatidylserines, phosphatidylinositols and phosphoethanolamines to be detected via MALDI(±)‐MS in both the positive and negative ion modes. An optimal MALDI‐MS protocol for lipidomic monitoring of a single intact embryo is therefore reported with potential applications in human and animal reproduction, cell development and stem cell research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, we combined a newly developed matrix coating technique – matrix coating assisted by an electric field (MCAEF) and matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) to enhance the imaging of peptides and proteins in tissue specimens of human prostate cancer. MCAEF increased the signal‐to‐noise ratios of the detected proteins by a factor of 2 to 5, and 232 signals were detected within the m/z 3500–37500 mass range on a time‐of‐flight mass spectrometer and with the sinapinic acid MALDI matrix. Among these species, three proteins (S100‐A9, S100‐A10, and S100‐A12) were only observed in the cancerous cell region and 14 proteins, including a fragment of mitogen‐activated protein kinase/extracellular signal‐regulated kinase kinase kinase 2, a fragment of cAMP‐regulated phosphoprotein 19, 3 apolipoproteins (C‐I, A‐I, and A‐II), 2 S100 proteins (A6 and A8), β‐microseminoprotein, tumor protein D52, α‐1‐acid glycoprotein 1, heat shock protein β‐1, prostate‐specific antigen, and 2 unidentified large peptides at m/z 5002.2 and 6704.2, showed significantly differential distributions at the p < 0.05 (t‐test) level between the cancerous and the noncancerous regions of the tissue. Among these 17 species, the distributions of apolipoprotein C‐I, S100‐A6, and S100‐A8 were verified by immunohistological staining. In summary, this study resulted in the imaging of the largest group of proteins in prostate cancer tissues by MALDI‐MS reported thus far, and is the first to show a correlation between S100 proteins and prostate cancer in a MS imaging study. The successful imaging of the three proteins only found in the cancerous tissues, as well as those showing differential expressions demonstrated the potential of MCAEF‐MALDI/MS for the in situ detection of potential cancer biomarkers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Open access mass spectrometry now provides the opportunity to move this spectroscopic method to the beginning of the analytical chain, a place formerly the exclusive province of NMR and TLC. To date this transition has been occurring in industrial settings but there has been less change in the academic environment. This paper provides one blueprint for setting up such a facility, primarily in support of organic synthesis but also for the use of biological scientists. The open access format used at UCI utilizes four instruments: an ESI-TOFMS system used in the flow injection mode, two GC/MS systems (one in EI and one in CI) and a MALDI-TOFMS system. The first three instruments have autosamplers and open access software whereas the MALDI system has a fully automated plate handling interface. This level of automation allows access to the instruments by a user community of more than 100 users, day or night. The decisions made in setting up these instruments were based on a 'keep it simple' philosophy, given the fact that the primary type of data of interest is the molecular mass of the analyte and that data are required for a very wide range of structures.  相似文献   

13.
This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of “coffee rings” in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the “coffee-ring effect” in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a “hidden coffee-ring effect” where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation.  相似文献   

14.
An update is presented covering the latest developments in the interfacing of liquid-phase separation systems and mass spectrometers. The interfacing devices presented are those developed for continuous-flow matrix-assisted laser desorption/ionization, micro- and nano-liquid chromatography/masspectrometry (MS), capillary electrophoresis/MS and on-chip separation technologies/MS. From the information that can be found in the most recent literature on the topic, it is evident that the trend towards the miniaturization of separation and interface devices is gaining ground. This can be rationalized by the substantial gains in sensitivity for the detection and study of extremely low levels of analytes and especially of high molecular mass biopolymers.  相似文献   

15.
黎军  邓慧敏  赖志辉  赵善楷 《化学学报》1999,57(10):1142-1146
报道以2,4,6-三羟基苯乙酮(2,4,6-THAP)为基体用基体辅助激光解吸/电离飞行时间质谱法(MALDI-TOF-MS)测定核酸分子的研究。2,4,6-THAP解吸和电离DNA分子的效率很高,测定DNA分子d(T)~1~0的[M-H]^-分辨率可达1130.0,信噪比为366.0,检出限达5×10^-^1^4mol,可以测定相对分子质量高达14800以上混合碱基组成的DNA分子。为提高基体对样品解吸/电离效率,对纯化DNA样品的方法进行了讨论。  相似文献   

16.
Desorption ElectroSpray Ionization (DESI) ‐ Orbitrap Mass Spectrometry (MS) was evaluated as a new tool for the characterization of various industrial synthetic polymers (poly(ethylene glycol), poly(propylene glycol), poly(methylmethacrylate), poly(dimethylsiloxane)) and copolymers, with masses ranging from 500 g.mol−1 up to more than 20 000 g.mol−1. Satisfying results in terms of signal stability and sensitivity were obtained from hydrophobic surfaces (HTC Prosolia) with a mixture water/methanol (10/90) as spray solvent in the presence of sodium salt. Taking into account the formation of multiplied charged species by DESI‐MS, a strategy based on the use of a deconvolution software followed by the automatic assignment of the ions was described allowing the rapid determination of Mn, Mw and PDI values. DESI‐Orbitrap MS results were compared to those obtained from matrix‐assisted laser desorption/ionization‐ time‐of‐flight MS and gel permeation chromatography. An application of DESI‐Orbitrap MS for the detection and identification of polymers directly from cosmetics was described. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
C(alpha)-Formylglycine, the catalytic amino acid residue in the active site of sulfatases, is generated by post-translational modification of a cysteine or serine residue. We describe a highly sensitive procedure for the detection of C(alpha)-formylglycine-containing peptides in tryptic digests of sulfatase proteins. The protocol is based on the formation of hydrazone derivatives of C(alpha)-formylglycine-containing peptides when using dinitrophenylhydrazine as a matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The hydrazone derivatives desorb and ionize with high efficiency and can be detected in the sub-femtomole range. The presence of C(alpha)-formylglycine is indicated by a mass increment of 180.13 u, corresponding to the hydrazone moiety, and also by a unique C-terminal fragment ion, characteristic of sulfatases, that becomes prominent in MALDI post-source decay mass spectra of the hydrazone derivatives.  相似文献   

18.
A prototype matrix-assisted laser desorption/ionization quadrupole time-of-flight (MALDI-TOF) tandem mass spectrometer was used to sequence a series of phosphotyrosine-, phosphothreonine- and phosphoserine-containing peptides. The high mass resolution and mass accuracy of the instrument allowed the localization of one, three or four phosphorylated amino acid residues in phosphopeptides up to 3.1 kDa. Tandem mass spectra of two different phosphotyrosine peptides permitted amino acid sequence determination and localization of one and three phosphorylation sites, respectively. The phosphotyrosine immonium ion at m/z 216.04 was observed in these MALDI low-energy CID tandem mass spectra. Elimination of phosphate groups was evident from the triphosphorylated peptide but not from the monophosphorylated species. The main fragmentation pathway for the synthetic phosphothreonine-containing peptide and for phosphoserine-containing peptides derived from beta-casein and ovalbumin was the beta-elimination of phosphoric acid with concomitant conversion of phosphoserine to dehydroalanine and phosphothreonine to 2-aminodehydrobutyric acid. Peptide fragment ions of the b- and y-type allowed, in all cases, the localization of phosphorylation sites. Ion signals corresponding to (b-17), (b-18) and (y-17) fragment ions were also observed. The abundant neutral loss of phosphoric acid (-98 Da) is useful for femtomole level detection of phosphoserine-peptides in crude peptide mixtures generated by gel in situ digestion of phosphoproteins.  相似文献   

19.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is a powerful tool for the measurement of low molecular mass compounds of biological interest. The limitations for this method are the volatility of many analytes, possible interference with matrix signals or bad ionization or desorption behavior of the compounds. We investigated the application of well-known and straightforward one-pot derivatization procedures to circumvent these problems. The derivatizations tested allow the measurement and the labeling of alcohols, aldehydes and ketones, carboxylic acids, alpha-ketocarboxylic acids and amines.  相似文献   

20.
Peptide mass fingerprinting (PMF) is a powerful technique in which experimentally measured m/z values of peptides resulting from a protein digest form the basis for a characteristic fingerprint of the intact protein. Due to its propensity to generate singly charged ions, along with its relative insensitivity to salts and buffers, matrix-assisted laser desorption and ionization (MALDI)-time-of-flight mass spectrometry (TOFMS) is the MS method of choice for PMF. The qualitative features of the mass spectrum can be selectively tuned by employing different methods to prepare the protein digest and matrix for MALDI-TOFMS. The selective tuning of MALDI mass spectra in order to optimize PMF is addressed here. Bovine serum albumin, carbonic anhydrase, cytochrome c, hemoglobin alpha- and beta-chain, and myoglobin were digested with trypsin and then analyzed by MALDI-TOFMS. 2,5-dihydroxybenzoic acid (DHB) and alpha-cyano-4-hydroxycinnamic acid (CHCA) were prepared using six different sample preparation methods: dried droplet, application of protein digest on MALDI plate followed by addition of matrix, dried droplet with vacuum drying, overlayer, sandwich, and dried droplet with heating. Improved results were obtained for the matrix alpha-cyano-4-hydroxycinnamic acid using a modification of the died droplet method in which the MALDI plate was heated to 80 °C prior to matrix application, which is supported by observations from scanning electron microscopy. Although each protein was found to have a different optimum sample preparation method for PMF, in general higher sequence coverage for PMF was obtained using DHB. The best PMF results were obtained when all of the mass spectral data for a particular protein digest was convolved together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号