首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formamidinium (FA) lead iodide perovskite materials feature promising photovoltaic performances and superior thermal stabilities. However, conversion of the perovskite α-FAPbI3 phase to the thermodynamically stable yet photovoltaically inactive δ-FAPbI3 phase compromises the photovoltaic performance. A strategy is presented to address this challenge by using low-dimensional hybrid perovskite materials comprising guaninium (G) organic spacer layers that act as stabilizers of the three-dimensional α-FAPbI3 phase. The underlying mode of interaction at the atomic level is unraveled by means of solid-state nuclear magnetic resonance spectroscopy, X-ray crystallography, transmission electron microscopy, molecular dynamics simulations, and DFT calculations. Low-dimensional-phase-containing hybrid FAPbI3 perovskite solar cells are obtained with improved performance and enhanced long-term stability.  相似文献   

2.
As a result of their attractive optoelectronic properties, metal halide APbI3 perovskites employing formamidinium (FA+) as the A cation are the focus of research. The superior chemical and thermal stability of FA+ cations makes α‐FAPbI3 more suitable for solar‐cell applications than methylammonium lead iodide (MAPbI3). However, its spontaneous conversion into the yellow non‐perovskite phase (δ‐FAPbI3) under ambient conditions poses a serious challenge for practical applications. Herein, we report on the stabilization of the desired α‐FAPbI3 perovskite phase by protecting it with a two‐dimensional (2D) IBA2FAPb2I7 (IBA=iso‐butylammonium overlayer, formed via stepwise annealing. The α‐FAPbI3/IBA2FAPb2I7 based perovskite solar cell (PSC) reached a high power conversion efficiency (PCE) of close to 23 %. In addition, it showed excellent operational stability, retaining around 85 % of its initial efficiency under severe combined heat and light stress, that is, simultaneous exposure with maximum power tracking to full simulated sunlight at 80 °C over 500 h.  相似文献   

3.
Organic–inorganic hybrid perovskites have attracted significant attention owing to their extraordinary optoelectronic properties with applications in the fields of solar energy, lighting, photodetectors, and lasers. The rational design of these hybrid materials is a key factor in the optimization of their performance in perovskite‐based devices. Herein, a mechanochemical approach is proposed as a highly efficient, simple, and reproducible method for the preparation of four types of hybrid perovskites, which were obtained in large amounts as polycrystalline powders with high purity and excellent optoelectronics properties. Two archetypal three‐dimensional (3D) perovskites (MAPbI3 and FAPbI3) were synthesized, together with a bidimensional (2D) perovskite (Gua2PbI4) and a “double‐chain” one‐dimensional (1D) perovskite (GuaPbI3), whose structure was elucidated by X‐ray diffraction.  相似文献   

4.
Polarized light detection is attracting increasing attention for its wide applications ranging from optical switches to high‐resolution photodetectors. Two‐dimensional (2D) hybrid perovskite‐type ferroelectrics combining inherent light polarization dependence of bulk photovoltaic effect (BPVE) with excellent semiconducting performance present significant possibilities. Now, the BPVE‐driven highly sensitive polarized light detection in a 2D trilayered hybrid perovskite ferroelectric, (allyammonium)2(ethylammonium)2Pb3Br10 ( 1 ), is presented. It shows a superior BPVE with near‐band gap photovoltage of ca. 2.5 V and high on/off switching ratio of current (ca. 104). Driven by the superior BPVE, 1 exhibits highly sensitive polarized light detection with a polarization ratio as high as ca. 15, which is far more beyond than those of structural anisotropy‐based monocomponent devices. This is the first realization of BPVE‐driven polarized light detection in hybrid perovskite ferroelectrics.  相似文献   

5.
Ternary hybrid perovskite solid solutions have shown superior optoelectronic properties and better stability than their ABX3 simple perovskite counterparts under ambient conditions. However, crystal growth and identification of the accurate composition of these complex crystalline compounds remain challenging, and their stability under extreme conditions such as in highly moist atmosphere is unknown. Herein, large-size (up to 2 cm) single crystals of ternary perovskite 0.80FAPbI3 ⋅ x′FAPbBr3 ⋅ y′CsPbI3 (x′+y′=0.20) are grown. An elemental analysis method based on wavelength dispersive X-ray fluorescence is proposed to determine their accurate compositions. Among these single crystals, the composition with y′=0.12 shows the best moisture stability at 90 % relative humidity for 15 days. Other components with richer or poorer Cs+ ions undergo different phase segregation behaviours. The performance and stability of photodetectors based on these single crystals are tested. This work offers a deeper insight into phase stability of ternary hybrid perovskite solid solution crystals in highly moist atmosphere.  相似文献   

6.
Hybrid organo–metal halide perovskite materials, such as CH3NH3PbI3, have been shown to be some of the most competitive candidates for absorber materials in photovoltaic (PV) applications. However, their potential has not been completely developed, because a photovoltaic effect with an anomalously large voltage can be achieved only in a ferroelectric phase, while these materials are probably ferroelectric only at temperatures below 180 K. A new hexagonal stacking perovskite‐type complex (3‐pyrrolinium)(CdCl3) exhibits above‐room‐temperature ferroelectricity with a Curie temperature Tc=316 K and a spontaneous polarization Ps=5.1 μC cm?2. The material also exhibits antiparallel 180° domains which are related to the anomalous photovoltaic effect. The open‐circuit photovoltage for a 1 mm‐thick bulky crystal reaches 32 V. This finding could provide a new approach to develop solar cells based on organo–metal halide perovskites in photovoltaic research.  相似文献   

7.
For emerging perovskite quantum dots (QDs), understanding the surface features and their impact on the materials and devices is becoming increasingly urgent. In this family, hybrid FAPbI3 QDs (FA: formamidium) exhibit higher ambient stability, near-infrared absorption and sufficient carrier lifetime. However, hybrid QDs suffer from difficulty in modulating surface ligand, which is essential for constructing conductive QD arrays for photovoltaics. Herein, assisted by an ionic liquid formamidine thiocyanate, we report a facile surface reconfiguration methodology to modulate surface and manipulate electronic coupling of FAPbI3 QDs, which is exploited to enhance charge transport for fabricating high-quality QD arrays and photovoltaic devices. Finally, a record-high efficiency approaching 15 % is achieved for FAPbI3 QD solar cells, and they retain over 80 % of the initial efficiency after aging in ambient environment (20–30 % humidity, 25 °C) for over 600 h.  相似文献   

8.
The reduced dimension perovskite including 2D perovskites are one of the most promising strategies to stabilize lead halide perovskite. A mixed‐cation 2D perovskite based on a steric phenyltrimethylammonium (PTA) cation is presented. The PTA‐MA mixed‐cation 2D perovskite of PTAMAPbI4 can be formed on the surface of MAPbI3 (PTAI‐MAPbI3) by controllable PTAI intercalation by either spin coating or soaking. The PTAMAPbI4 capping layer can not only passivate PTAI‐MAPbI3 perovskite but also act as MA+ locker to inhibit MAI extraction and significantly enhance the stability. The highly stable PTAI‐MAPbI3 based perovskite solar cells exhibit a reproducible photovoltaic performance with a champion PCE of 21.16 %. Such unencapsulated devices retain 93 % of initial efficiency after 500 h continuous illumination. This steric mixed‐cation 2D perovskite as MA+ locker to stabilize the MAPbI3 is a promising strategy to design stable and high‐performance hybrid lead halide perovskites.  相似文献   

9.
High‐quality phase‐pure MA1?xFAxPbI3 planar films (MA=methylammonium, FA=formamidinium) with extended absorption and enhanced thermal stability are difficult to deposit by regular simple solution chemistry approaches owing to crystallization competition between the easy‐to‐crystallize but unwanted δ‐FAPbI3/MAPbI3 and FAxMA1?xPbI3 requiring rigid crystallization conditions. Here A 2D–3D conversion to transform compact 2D mixed composition HMA1?xFAxPbI3Cl perovskite precursor films into 3D MA1?xFAxPbI3 (x=0.1–0.9) perovskites is presented. The designed Cl/I and H/FA(MA) ion exchange reaction induced fast transformation of compact 2D perovskite film, helping to form the phase‐pure and high quality MA1?xFAxPbI3 without δ‐FAPbI3 and MAPbI3 impurity. In all, we successfully developed a facile one‐step method to fabricate high quality phase‐pure MA1?xFAxPbI3 (x=0.1–0.9) perovskite films by 2D–3D conversion of HMA1?xFAxPbI3Cl perovskite. This 2D–3D conversion is a promising strategy for lead halide perovskite fabrication.  相似文献   

10.
The alloying behavior between FAPbI3 and CsSnI3 perovskites is studied carefully for the first time, which has led to the realization of single‐phase hybrid perovskites of (FAPbI3)1−x (CsSnI3)x (0<x <1) compositions with anomalous bandgaps. (FAPbI3)1−x (CsSnI3)x perovskites exhibit stable, homogenous composition/microstructure at the nanoscale, as confirmed by microscopic characterization. The ideal bandgap of 1.3 eV for single‐junction solar cell operation is achieved in the rationally‐tailored (FAPbI3)0.7(CsSnI3)0.3‐composition perovskite. Solar cells based on this new perovskite show power conversion efficiency up to 14.6 %.  相似文献   

11.
By dimensional reduction of the 3D motif of Cs2AgBiBr6, a lead‐free 2D hybrid double perovskite, (i‐PA)2CsAgBiBr7 ( 1, i‐PA=isopentylammonium), was successfully designed. It adopts a quantum‐confined bilayered structure with alternating organic and inorganic sheets. Strikingly, the unique 2D architecture endows it highly anisotropic nature of physical properties, including electric conductivity and optical absorption (the ratio αb/αc=1.9 at 405 nm). Such anisotropy attributes result in the strong polarization‐sensitive responses with large dichroic ratios up to 1.35, being comparable to some 2D inorganic materials. This is the first study on the hybrid double perovskites with strong polarization sensitivity. A crystal device of 1 also exhibits rapid response speed (ca. 200 μs) and excellent stabilities. The family of 2D hybrid double perovskites are promising optoelectronic candidates, and this work paves a new pathway for exploring new green polarization‐sensitive materials.  相似文献   

12.
The unique optoelectronic properties and promising photovoltaic applications of organolead halide perovskites have driven the exploration of facile strategies to synthesize organometal halide perovskites and corresponding hybrid materials and devices. Currently, the preparation of CH3NH3PbBr3 perovskite nanowires, especially those with porous features, is still a great challenge. An efficient self‐template‐directed synthesis of high‐quality porous CH3NH3PbBr3 perovskite nanowires in solution at room temperature using the Pb‐containing precursor nanowires as both the sacrificial template and the Pb2+ source in the presence of CH3NH3Br and HBr is now presented. The initial formation of CH3NH3PbBr3 perovskite layers on the surface of the precursor nanowires and the following dissolution of the organic component of the latter led to the formation of mesopores and the preservation of the 1D morphology. Furthermore, the perovskite nanowires are potential materials for visible‐light photodetectors with high sensitivity and stability.  相似文献   

13.
Low‐toxicity, air‐stable bismuth‐based perovskite materials are attractive substitutes for lead halide perovskites in photovoltaic and optoelectronic devices. The structural, optical, and electrical property changes of zero‐dimensional perovskite Cs3Bi2I9 resulting from lattice compression is presented. An emission enhancement under mild pressure is attributed to the increase in exciton binding energy. Unprecedented band gap narrowing originated from Bi?I bond contraction, and the decrease in bridging Bi‐I‐Bi angle enhances metal halide orbital overlap, thereby breaking through the Shockley–Queisser limit under relatively low pressure. Pressure‐induced structural evolutions correlate well with changes in optical properties, and the changes are reversible upon decompression. Considerable resistance reduction implies a semiconductor‐to‐conductor transition at ca. 28 GPa, and the final confirmed metallic character by electrical experiments indicates a wholly new electronic property.  相似文献   

14.
Two‐dimensional (2D) organic–inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single‐ and few‐layer free‐standing phenylethylammonium lead halide perovskite NSs, that is, (PEA)2PbX4 (PEA=C8H9NH3, X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications.  相似文献   

15.
Methylamine‐induced thin‐film transformation at room‐temperature is discovered, where a porous, rough, polycrystalline NH4PbI3 non‐perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH3NH3PbI3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH4PbI3‐to‐CH3NH3PbI3 transformation process. The chemical origins of this transformation are studied at various length scales.  相似文献   

16.
Recently, lead halide‐based perovskites have become one of the hottest topics in photovoltaic research because of their excellent optoelectronic properties. Among them, organic‐inorganic hybrid perovskite solar cells (PSCs) have made very rapid progress with their power conversion efficiency (PCE) now at 23.7 %. However, the intrinsically unstable nature of these materials, particularly to moisture and heat, may be a problem for their long‐term stability. Replacing the fragile organic group with more robust inorganic Cs+ cations forms the cesium lead halide system (CsPbX3, X is halide) as all‐inorganic perovskites which are much more thermally stable and often more stable to other factors. From the first report in 2015 to now, the PCE of CsPbX3‐based PSCs has abruptly increased from 2.9 % to 17.1 % with much enhanced stability. In this Review, we summarize the field up to now, propose solutions in terms of development bottlenecks, and attempt to boost further research in CsPbX3 PSCs.  相似文献   

17.
Inorganic–organic hybrid perovskites, especially two‐dimensional (2D) layered halide perovskites, have attracted significant attention due to their unique structures and attractive optoelectronic properties, which open up a great opportunity for next‐generation photosensitive devices. Herein, we report a new 2D bilayered inorganic–organic hybrid perovskite, (C6H13NH3)2(NH2CHNH2)Pb2I7 ( HFA , where C6H13NH3+ is hexylaminium and NH2CHNH2+ is formamidinium), which exhibits a remarkable photoresponse under broadband light illumination. Structural characterizations demonstrate that the 2D perovskite structure of HFA is constructed by alternant stacking of inorganic lead iodide bilayered sheets and organic hexylaminium layers. Optical absorbance measurements combined with density functional theory (DFT) calculations suggest that HFA is a direct band gap semiconductor with a narrow band gap (Eg) of ≈2.02 eV. Based on these findings, photodetectors based on HFA crystal wafer are fabricated, which exhibit fascinating optoelectronic properties including large on/off current ratios (over 103), fast response speeds (τrise=310 μs and τdecay=520 μs) and high responsivity (≈0.95 mA W?1). This work will contribute to the design and development of new two‐dimensional bilayer inorganic–organic hybrid perovskites for high‐performance photosensitive devices.  相似文献   

18.
Despite the great success of perovskite photovoltaics in terms of device efficiency and stability using laboratory-scale spin-coating methods, the demand for high-throughput and cost-effective solutions remains unresolved and rarely reported because of the complicated nature of perovskite crystallization. In this work, we propose a stable precursor ink design strategy to control the solvent volatilization and perovskite crystallization to enable the wide speed window printing (0.3 to 18.0 m/min) of phase-pure FAPbI3 perovskite solar cells (pero-SCs) in ambient atmosphere. The FAPbI3 perovskite precursor ink uses volatile acetonitrile (ACN) as the main solvent with DMF and DMSO as coordination additives is beneficial to improve the ink stability, inhibit the coffee rings, and the complicated intermediate FAPbI3 phases, delivering high-quality pin-hole free and phase-pure FAPbI3 perovskite films with large-scale uniformity. Ultimately, small-area FAPbI3 pero-SCs (0.062 cm2) and large-area modules (15.64 cm2) achieved remarkable efficiencies of 24.32 % and 21.90 %, respectively, whereas the PCE of the devices can be maintained at 23.76 % when the printing speed increases to 18.0 m/min. Specifically, the unencapsulated device exhibits superior operational stability with T90>1350 h. This work represents a step towards the scalable, cost-effective manufacturing of perovskite photovoltaics with both high performance and high throughput.  相似文献   

19.
Halide double perovskites have recently emerged as a promising environmentally friendly optoelectronic and photovoltaic material for their inherent thermodynamic stability, high defect tolerance, and appropriate band gaps. However, to date, no ferroelectric material based on halide double perovskites has been discovered. Herein, by hetero‐substitution of lead and cation intercalation of n‐propylamine, the first halide double perovskite ferroelectric, (n‐propylammonium)2CsAgBiBr7 ( 1 ), is reported and it exhibits distinct ferroelectricity with a notable saturation polarization of about 1.5 μC cm?2. More importantly, single‐crystal photodetectors of 1 exhibit extraordinary performance with containing high on/off ratios of about 104, fast response rates of 141 μs, and detectivity as high as 5.3×1011 Jones. This finding opens a new way to design high‐performance perovskite ferroelectrics, and provides a viable approach in the search for stable and lead‐free optoelectronic materials as an alternative to the lead‐containing system.  相似文献   

20.
Recently, with the prevalence of `perovskite fever', organic–inorganic hybrid perovskites (OHPs) have attracted intense attention due to their remarkable structural variability and highly tunable properties. In particular, the optical and electrical properties of organic–inorganic hybrid lead halides are typical of the OHP family. Besides, although three‐dimensional hybrid perovskites, such as [CH3NH3]PbX3 (X = Cl, Br or I), have been reported, the development of new organic–inorganic hybrid semiconductors is still an area in urgent need of exploration. Here, an organic–inorganic hybrid lead halide perovskite is reported, namely poly[(2‐azaniumylethyl)trimethylphosphanium [tetra‐μ‐bromido‐plumbate(II)]], {(C5H16NP)[PbBr4]}n, in which an organic cation is embedded in inorganic two‐dimensional (2D) mesh layers to produce a sandwich structure. This unique sandwich 2D hybrid perovskite material shows an indirect band gap of ~2.700 eV. The properties of this compound as a semiconductor are demonstrated by a series of optical characterizations and indicate potential applications for optical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号