首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We view an undirected graph G as a symmetric digraph, where each edge xy is replaced by two opposite arcs e=(x,y) and e?1=(y,x). Assume S is an inverse closed subset of permutations of positive integers. We say G is S-k-colourable if for any mapping σ:E(G)S with σ(x,y)=(σ(y,x))?1, there is a mapping f:V(G)[k]={1,2,,k} such that σe(f(x))f(y) for each arc e=(x,y). The concept of S-k-colourable is a common generalization of several other colouring concepts. This paper is focused on finding the sets S such that every triangle-free planar graph is S-3-colourable. Such a set S is called TFP-good. Grötzsch’s theorem is equivalent to say that S={id} is TFP-good. We prove that for any inverse closed subset S of S3 which is not isomorphic to {id,(12)}, S is TFP-good if and only if either S={id} or there exists a[3] such that for each πS, π(a)a. It remains an open question to determine whether or not S={id,(12)} is TFP-good.  相似文献   

4.
A graph is (k1,k2)-colorable if it admits a vertex partition into a graph with maximum degree at most k1 and a graph with maximum degree at most k2. We show that every (C3,C4,C6)-free planar graph is (0,6)-colorable. We also show that deciding whether a (C3,C4,C6)-free planar graph is (0,3)-colorable is NP-complete.  相似文献   

5.
A topological graph is a graph drawn in the plane. A topological graph is k-plane, k>0, if each edge is crossed at most k times. We study the problem of partitioning the edges of a k-plane graph such that each partite set forms a graph with a simpler structure. While this problem has been studied for k=1, we focus on optimal 2-plane and on optimal 3-plane graphs, which are 2-plane and 3-plane graphs with maximum density. We prove the following results. (i) It is not possible to partition the edges of a simple (i.e., with neither self-loops nor parallel edges) optimal 2-plane graph into a 1-plane graph and a forest, while (ii) an edge partition formed by a 1-plane graph and two plane forests always exists and can be computed in linear time. (iii) There exist efficient algorithms to partition the edges of a simple optimal 2-plane graph into a 1-plane graph and a plane graph with maximum vertex degree at most 12, or with maximum vertex degree at most 8 if the optimal2-plane graph is such that its crossing-free edges form a graph with no separating triangles. (iv) There exists an infinite family of simple optimal 2-plane graphs such that in any edge partition composed of a 1-plane graph and a plane graph, the plane graph has maximum vertex degree at least 6 and the 1-plane graph has maximum vertex degree at least 12. (v) Every optimal 3-plane graph whose crossing-free edges form a biconnected graph can be decomposed, in linear time, into a 2-plane graph and two plane forests.  相似文献   

6.
7.
We consider the structure of H-free subgraphs of graphs with high minimal degree. We prove that for every k>m there exists an ???(k,m)>0 so that the following holds. For every graph H with chromatic number k from which one can delete an edge and reduce the chromatic number, and for every graph G on n>n0(H) vertices in which all degrees are at least (1??)n, any subgraph of G which is H-free and contains the maximum number of copies of the complete graph Km is (k?1)-colorable.We also consider several extensions for the case of a general forbidden graph H of a given chromatic number, and for subgraphs maximizing the number of copies of balanced blowups of complete graphs.  相似文献   

8.
Let G be a connected graph. The eccentricity e(v) of a vertex v is the distance from v to a vertex farthest from v. The average eccentricity avec(G) of G is defined as the average of the eccentricities of the vertices of G, i.e., as 1|V|vVe(v), where V is the vertex set of G. For kN, the k-packing number of G is the largest cardinality of a set of vertices of G whose pairwise distance is greater than k. A k-dominating set of G is a set S of vertices such that every vertex of G is within distance k from some vertex of S. The k-domination number (connected k-domination number) of G is the minimum cardinality of a k-dominating set (of a k-dominating set that induces a connected subgraph) of G. For k=1, the k-packing number, the k-domination number and the connected k-domination number are the independence number, the domination number and the connected domination number, respectively. In this paper we present upper bounds on the average eccentricity of graphs in terms of order and either k-packing number, k-domination number or connected k-domination number.  相似文献   

9.
Oriented graphs in which every pair of vertices can be connected by a unique path of given length (not depending on the choice of the pair of vertices) are studied. These graphs are a natural extension of the well-known de Bruijn graphs and retain their most important properties. Some results on the structure of and methods for constructing such graphs are obtained. Translated fromMatematicheskie Zametki, Vol. 62, No. 4, pp. 540–548, October, 1997. Translated by O. V. Sipacheva  相似文献   

10.
For a graph G=(V,E), the k-dominating graph Dk(G) of G has vertices corresponding to the dominating sets of G having cardinality at most k, where two vertices of Dk(G) are adjacent if and only if the dominating set corresponding to one of the vertices can be obtained from the dominating set corresponding to the second vertex by the addition or deletion of a single vertex. We denote the domination and upper domination numbers of G by γ(G) and Γ(G), respectively, and the smallest integer ε for which Dk(G) is connected for all kε by d0(G). It is known that Γ(G)+1d0(G)|V|, but constructing a graph G such that d0(G)>Γ(G)+1 appears to be difficult.We present two related constructions. The first construction shows that for each integer k3 and each integer r such that 1rk?1, there exists a graph Gk,r such that Γ(Gk,r)=k, γ(Gk,r)=r+1 and d0(Gk,r)=k+r=Γ(G)+γ(G)?1. The second construction shows that for each integer k3 and each integer r such that 1rk?1, there exists a graph Qk,r such that Γ(Qk,r)=k, γ(Qk,r)=r and d0(Qk,r)=k+r=Γ(G)+γ(G).  相似文献   

11.
12.
13.
In [E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum? Linear Algebra Appl. 373 (2003), 241-272] we gave a survey of answers to the question of which graphs are determined by the spectrum of some matrix associated to the graph. In particular, the usual adjacency matrix and the Laplacian matrix were addressed. Furthermore, we formulated some research questions on the topic. In the meantime, some of these questions have been (partially) answered. In the present paper we give a survey of these and other developments.  相似文献   

14.
A d-graph is a complete graph whose edges are colored by d colors, that is, partitioned into d subsets some of which might be empty. We say that a d-graph is complementary connected (CC) if the complement to each chromatic component of is connected on V. We prove that every such d-graph contains a sub-d-graph Π or , where Π has four vertices and two non-empty chromatic components each of which is a P4, while is a three-colored triangle. This statement implies that each Π- and -free d-graph is uniquely decomposable in accordance with a tree whose leaves are the vertices of V and the interior vertices of T are labeled by the colors 1,…d. Such a tree is naturally interpreted as a positional game form (with perfect information and without moves of chance) of d players I={1,…,d} and n outcomes V={v1,…,vn}. Thus, we get a one-to-one correspondence between these game forms and Π- and -free d-graphs. As a corollary, we obtain a characterization of the normal forms of positional games with perfect information and, in case d=2, several characterizations of the read-once Boolean functions. These results are not new; in fact, they are 30 and, in case d=2, even 40 years old. Yet, some important proofs did not appear in English.Gyárfás and Simonyi recently proved a similar decomposition theorem for the -free d-graphs. They showed that each -free d-graph can be obtained from the d-graphs with only two non-empty chromatic components by successive substitutions. This theorem is based on results by Gallai, Lovász, Cameron and Edmonds. We obtain some new applications of these results.  相似文献   

15.
We say that two graphs G and H with the same vertex set commute if their adjacency matrices commute. In this article, we show that for any natural number r, the complete multigraph K is decomposable into commuting perfect matchings if and only if n is a 2‐power. Also, it is shown that the complete graph Kn is decomposable into commuting Hamilton cycles if and only if n is a prime number. © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

16.
Szemerédi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and Rödl proved an analogue of Szemerédi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemerédi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs.  相似文献   

17.
Advancing the sparse regularity method, we prove one‐sided and two‐sided regularity inheritance lemmas for subgraphs of bijumbled graphs, improving on results of Conlon, Fox, and Zhao. These inheritance lemmas also imply improved H‐counting lemmas for subgraphs of bijumbled graphs, for some H.  相似文献   

18.
In 1968, Vizing made the following two conjectures for graphs which are critical with respect to the chromatic index: (1) every critical graph has a 2‐factor, and (2) every independent vertex set in a critical graph contains at most half of the vertices. We prove both conjectures for critical graphs with many edges, and determine upper bounds for the size of independent vertex sets in those graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 113–118, 2004  相似文献   

19.
In 1983, Chvátal, Trotter and the two senior authors proved that for any Δ there exists a constant B such that, for any n, any 2-colouring of the edges of the complete graph KN with N?Bn vertices yields a monochromatic copy of any graph H that has n vertices and maximum degree Δ. We prove that the complete graph may be replaced by a sparser graph G that has N vertices and edges, with N=⌈Bn⌉ for some constant B that depends only on Δ. Consequently, the so-called size-Ramsey number of any H with n vertices and maximum degree Δ is . Our approach is based on random graphs; in fact, we show that the classical Erd?s–Rényi random graph with the numerical parameters above satisfies a stronger partition property with high probability, namely, that any 2-colouring of its edges contains a monochromatic universal graph for the class of graphs on n vertices and maximum degree Δ.The main tool in our proof is the regularity method, adapted to a suitable sparse setting. The novel ingredient developed here is an embedding strategy that allows one to embed bounded degree graphs of linear order in certain pseudorandom graphs. Crucial to our proof is the fact that regularity is typically inherited at a scale that is much finer than the scale at which it is assumed.  相似文献   

20.
An edge of a k-connected graph is said to be k-contractible if its contraction results in a k-connected graph. A k-connected graph without k-contractible edge is said to be contraction critically k-connected. Y. Egawa and W. Mader, independently, showed that the minimum degree of a contraction critical k-connected graph is at most 5k4?1. Hence, the minimum degree of a contraction critical 8-connected graph is either 8 or 9. This paper shows that a graph G is a contraction critical 8-connected graph with minimum degree 9 if and only if G is the strong product of a contraction critical 4-connected graph H and K2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号