首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As it is known, the secondary ion yields increase stepwise upon increasing O2 exposure, during SIMS measurements on metal samples in an oxygen atmosphere. Taking Auger spectra at varying oxygen exposure, the variation of satellite peaks and the chemical shift has been monitored, and a similar step-like dependence at the same range of oxygen exposures was found. This shows, that the discontinuous increase in the secondary ion intensity is due to the different types of oxides formed on the metal surface. Identification of these oxides are discussed.  相似文献   

2.
Conclusions Lithium tert-butyltrialkylborates are capable of chemisorbing oxygen. The activation energy for thermal desorption of oxygen from [t-C4H9OB(OR)3]Li·nO2 at 298–548 K increases with decreasing degree of O2 sorption and with increasing length of the alkyl substituent; for complexes with R=n-C4H9, n-C7H15, and n-C10H21, the values increase from 48.90 to 70.92 kJ/mole.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 251–253, February, 1989.  相似文献   

3.
4.
5.
6.
The isotope fractionation of O(2) gas during adsorption onto, and desorption from, molecular sieve zeolite (MSZ) has been confirmed. It has been found that the magnitude of fractionation during gas adsorption for the determination of isotope ratio measurements by dual inlet mass spectrometry is significant during desorption but not during adsorption. The isotope shift will take place during insufficient desorption from MSZ and its magnitude varies with the amount of MSZ and its identity. In order to obtain complete desorption and to remove isotope shifts, the use of the minimum amount of 5A MSZ and additional heating at a temperature of 60 degrees C for a period of 10 min just before gas admission into the mass spectrometer are recommended.  相似文献   

7.
Calcium lignosulfonate adsorption and desorption on Berea sandstone   总被引:3,自引:0,他引:3  
This paper describes adsorption and desorption studies carried out with calcium lignosulfonate (CLS) on Berea sandstone. Circulation experiments were performed to determine CLS adsorption isotherms and the effects of CLS concentration, temperature, salinity, brine hardness, and injection rate on adsorption density. Flow-through experiments were performed to assess the reversibility of CLS adsorption and the influence of postflush rate, brine concentration, brine hardness, brine pH, and temperature on the desorption process. Results indicate that CLS adsorption isotherms on Berea sandstone follow the Freundlich isotherm law. The results presented in this paper on the effects of CLS adsorption and desorption on Berea sandstone show that: (1) increasing CLS concentration and salinity increases CLS adsorption density; (2) increasing temperature will decrease adsorption density; (3) increasing injection rate of CLS solution will slightly decrease CLS adsorption density; (4) postflush rate and salinity of brine have a large impact on the CLS desorption process; (5) the adsorption and desorption process are not completely reversible; and (5) temperature and pH of the postflush brine have little effect on desorption.  相似文献   

8.
9.
Cobalt electrodeposition on polycrystalline palladium was studied at different temperatures using potentiostatic and voltammetric techniques. Temperature effect on kinetics parameters, diffusion coefficient, and charge transfer coefficient was analyzed. The values of nucleation rate and rate constant of the proton reduction reaction (k PR) increased with the temperature increment and the applied overpotential. The number of active nucleation sites was slightly affected with temperature increase. At higher temperatures, the larger k PR values suggested the proton reduction process is favored. The temperature effect on the values of the transfer coefficient was analyzed and a decrease in its value with the temperature increase was observed. From a Conway plot, it was observed that entropy change is the main factor that controls the kinetics of the reaction in this system.  相似文献   

10.
The adsorption of CO on polycrystalline TiO2 was investigated by static adsorption microcalorimetry. The initial differential heat of adsorption (qdiff,0) of CO on polycrystalline titania is 40 kJ/mol, and the standard adsorption entropy (Deltas0) is -104 J mol(-1) K(-1). These results are consistent with those derived from temperature-programmed desorption and FTIR results in the literature. The good reproducibility of the isotherms and the stable qdiff indicate that the lattice oxygen and hydroxyl groups on titania surface are basically not reactive to adsorbed CO.  相似文献   

11.
Studies of water vapor adsorption on polycrystalline Rh at T>315 K and P=(2–4)×10–2 Pa indicate that water is adsorbed dissociatively to Oads and Oads through a molecularly adsorbed species. Desorption activation energy is 46 and 69 kJ/mol for molecular and dissociative species, respectively.
Rh (2–4)·10–2 . , O OH - . 46 /, -69 /.
  相似文献   

12.
The decomposition of thin surface oxide films on polycrystalline palladium Pd(poly) at 500–1300 K was investigated by mathematical modeling. This process was analyzed in terms of a model including O2 desorption from the chemisorbed oxygen layer (Oads) and the passage of oxygen inserted under the surface layer of the metal (Oabs) and oxygen dissolved in metal subsurface layers (Odis) to the surface. O2 desorption was modeled on a surface with a square lattice of adsorption sites, with account taken of the energy of the lateral repulsive interactions between adjacent Oads atoms (εaa). At εaa = 10 kJ/mol and when the activation energy of O2 desorption for a chemisorbed-oxygen surface coverage of θ ≈ 0 is Edes0 = 230 kJ/mol, the calculated spectra are in agreement with the oxygen temperature-programmed desorption (TPD) spectra obtained for Pd(poly) at θ ≤ 0.5. The passage of Oabs and Odis atoms to the surface was calculated using a first-order equation, with account taken of the activation energy for these atoms coming out to the surface (E2 and E3, respectively). As the oxide film is heated, O2 desorption is accompanied by the passage of Oabs and then Odis to the surface, which leads to an increase in the Oads surface coverage and, accordingly, to a buildup of lateral surroundings in the adsorbed layer. Owing to this fact and to the repulsive interactions between Oads atoms, the bonds between Oads and the surface weaken and Edes decreases. As a consequence, the O2 desorption rate increases and a low-temperature peak with Tmax ≈ 710 K, which is due to the passage of Oabs atoms to the surface, and then a high-temperature peak with Tmax ≈ 770 K, which is due to the passage of Odis atoms to the surface, appear in the TPD spectrum. At εaa = 10 kJ/mol, Edes0 = 230 kJ/mol, E2 = 145 kJ/mol, and E3 = 160 kJ/mol and when the number of inserted oxygen monolayers is θabs ≤ 0.3 and the number of oxygen monolayers dissolved in subsurface layers is θdis ≤ 10, the TPD spectra calculated for the given model are in agreement with the O2 TPD spectra that are observed for Pd(poly) and are due to the decomposition of surface oxide films.  相似文献   

13.
The desorption of oxygen from polycrystalline palladium (Pd(poly)) was studied using temperature-programmed desorption (TPD) at 500–1300 K and the amounts of oxygen absorbed by palladium (n) from 0.05 to 50 monolayers. It was found that the desorption of O2 from Pd(poly), which occurred from a chemisorbed oxygen layer (Oads), in the release of oxygen from a near-surface metal layer in the course of the decomposition of PdO surface oxide, and in the release of oxygen from the bulk of palladium (Oabs), was governed by repulsive interactions between Oads atoms and the formation and decomposition of Oads-Pd*-Oabs structures (Pd* is a surface palladium atom). At θ ≤ 0.5, the repulsive interactions between Oads atoms (ɛaa = 10 kJ/mol) resulted in the desorption of O2 from Pd(poly) at 650–950 K. At 0.5 ≤ n ≤ 1.0, the release of inserted oxygen from a near-surface palladium layer occurred during TPD in the course of the migration of Oabs atoms to the surface and the formation-decomposition of Oads-Pd*-Oabs structures. As a result, the desorption of O2 occurred in accordance with a first-order reaction with a thermal desorption (TD) peak at T max ∼ 700 K. At 1.0 ≤ n ≤ 2.0, the decomposition of PdO surface oxide occurred at a constant surface cover-age with oxygen during TPD in the course of the formation-decomposition of Oads-Pd*-Oabs structures. Because of this, the desorption of O2 occurred in accordance with a zero-order reaction at low temperatures with a TD peak at T max ∼ 675 K. At 1.0 ≤ n ≤ 50, oxygen atoms diffused from deep palladium layers in the course of TPD and arrived at the surface at high temperatures. As a result, O2 was desorbed with a high-temperature TD peak at T > 750 K.  相似文献   

14.
The kinetics of adsorption of lysozyme and alpha-lactalbumin from aqueous solution on silica and hydrophobized silica has been studied. The initial rate of adsorption of lysozyme at the hydrophilic surface is comparable with the limiting flux. For lysozyme at the hydrophobic surface and alpha-lactalbumin on both surfaces, the rate of adsorption is lower than the limiting flux, but the adsorption proceeds cooperatively, as manifested by an increase in the adsorption rate after the first protein molecules are adsorbed. At the hydrophilic surface, adsorption saturation (reflected in a steady-state value of the adsorbed amount) of both proteins strongly depends on the rate of adsorption, but for the hydrophobic surface no such dependency is observed. It points to structural relaxation ("spreading") of the adsorbed protein molecules, which occurs at the hydrophobic surface faster than at the hydrophilic one. For lysozyme, desorption has been studied as well. It is found that the desorbable fraction decreases after longer residence time of the protein at the interface.  相似文献   

15.
Summary An accurate gravimetric method was used to explore water adsorption/desorption isotherms between 105 and to 250°C for a number of synthetic and natural porous solids including controlled pore glass, activated carbon fiber monoliths, natural zeolites, pillared clay, and geothermal reservoir rocks. The main goal of this work was to evaluate water adsorption results, in particular temperature dependence of hysteresis, for relatively uniform, nano-structured solids, in the context of other state-of-the-art experimental and modeling methods including nitrogen adsorption, spectroscopy, neutron scattering, and molecular simulation. Since no single method is able to provide a complete characterization of porous materials, a combination of approaches is needed to achieve progress in understanding the fluid-solid interactions on the way to developing a predictive capability.  相似文献   

16.
The initial steps of aluminum oxidation were studied by scanning tunnel microscopy (STM). A procedure was proposed and implemented for obtaining information on the migration of atoms formed by dissociative adsorption from the measurement of distances between adsorbed atoms visible in STM images.Translated from Kinetika i Kataliz, Vol. 46, No. 1, 2005, pp. 137–140. Original Russian Text Copyright © 2005 by Andreev, Grishin, Dalidchik, Kovalevskii, Shub.  相似文献   

17.
To study the desorption mechanism of methane in coal by H2O injection and establish the Wiser molecular structure model of bituminous coal, the Grand Canonical Monte Carlo method was used to study the desorption behavior of CH4 in coal with different amounts of H2O injection at molecular scale. The results showed that at 293 K, the maximum adsorption capacity of H2O was about 16 mmol/g, and that of CH4 was about 8 mmol/g, which was about twice that of CH4. This indicates that H2O has a stronger adsorption capacity than CH4. For methane-bearing coal, when the amount of water injected is 100, the average relative concentration of CH4 is 0.5446, and the average relative concentration of CH4 decreases by 33.77% compared to the water content of 20. Under the same time conditions, the root mean square displacement and diffusion coefficient of CH4 decrease with the increase of H2O injection quantity. With the increase of H2O injection, the motion velocity of CH4 in vacuum layer decreased. When water was injected, methane was trapped in the coal by water. The more H2O injected, the more methane trapped in the coal, and the less methane desorption. This research lays a theoretical foundation for further research involving coal-water interaction.  相似文献   

18.
Different adsorption forms of oxygen on silver are discussed. Four main types of oxygen forming at different temperatures and oxygen pressures have been distinguished. A kinetic model describing the formation and transformations of the oxygen forms and taking into account the surface amorphization has been proposed. Numerical modeling of stationary concentrations using this model gives evidence for a temperature window ΔT=500–800 K, where a quasimolecular oxygen state (E=530.5 eV, Tdes=800–900 K) can exist at high oxygen pressures.  相似文献   

19.
20.
Sastre  German  Kärger  Jörg  Ruthven  Douglas M. 《Adsorption》2021,27(5):777-785
Adsorption - Adsorption and desorption of hydrocarbons in a realistic model (2496 atoms) of ZSM-5 zeolite (MFI), including an external surface and a reservoir for molecules, have been studied using...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号