首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
金离子掺杂对二氧化钛光催化性能的影响   总被引:49,自引:0,他引:49  
利用高压钠灯作光源,在Au^3+-TiO2悬浮溶液中,通过紫外-可见吸光度与TOC测定证实亚甲基蓝能被快速脱色降解。金离子掺杂可大大提高TiO2的光催化活性,金离子的最佳掺杂摩尔分数为0.5%。通过表征催化剂的晶型,化学组成,荧光光谱,紫外-可见吸收光谱,电场诱导表面光电压谱,提示金离子改性的机理,紫外-可见吸收光谱证实金离子掺杂可增强催化剂在可见光区域的吸收能力,由于产生金杂质能级,金离子改性TiO2能被可见光激发。适量的金杂质能降低催化剂的荧光发射强度与电场诱导表面光电压谱强度。根据不同金离掺杂摩尔分数,荧光发射强度与电场诱导表面光电压谱强度从弱到强的排序与光催化活性比强到弱的排序是一致的。  相似文献   

2.
Intact bovine insulin, with its two chains linked via two disulfide linkages, has been used as a model system to study the incorporation of one or more gold cations as means for facilitating the cleavage of multiple disulfide bonds in a tandem mass spectrometry experiment. Gas-phase ion/ion reactions involving Au(I)Cl(2) (-) or Au(III)Cl(4) (-) were used to incorporate either one or two gold cations into multiply-protonated insulin cations, followed by ion trap collision-induced dissociation (CID) of the products. The incorporation of a single gold cation followed by CID showed little evidence for disulfide bond cleavage. Rather, the CID spectra were similar to those acquired for the same charge state with only excess protons present. However, the incorporation of two gold cations, regardless of oxidation state, resulted in efficient cleavage of the disulfide bonds connecting the two chains of insulin. Furthermore, ion trap CID of the insulin complexes containing two gold cations showed more sequence information compared to the complexes containing only one gold cation or no gold cations. The partitioning of the gold cations between the two chains upon CID proved to be largely asymmetric, as both gold cations tended to stay together. There appeared to be a slight preference for both gold cations to partition into the B-chain. However, the relatively low contribution from single chain ions with only one gold ion suggests a degree of cooperativity in the overall mechanism for separation of the two chains.  相似文献   

3.

The interaction between the Pb2+ ion and gold is studied using the cluster metal surface model and the density functional method. The geometric and energy characteristics of the interaction between this ion and the gold surface are estimated. The form in which the Pb2+ ion exists on the surface is more ad-ionic than ad-atomic. The electron structure of the Au–Pbads2+ system is analyzed. The participation of the adsorbed lead ion and its neighboring gold atoms in the formation of molecular orbitals in this system is estimated. It is established that the contribution to their formation is predominantly provided by the lead s-orbitals and the gold d-orbitals. The interaction with a solvent decreases the transfer of a charge from an adsorbed lead ion to gold. It is demonstrated that the hydrolyzability of a lead ion decreases upon its transition from the electrolyte phase to the surface.

  相似文献   

4.
Summary Kinetics of the oxidation of hydrazinium ion by gold(III) have been studied spectrophotometrically in hydrochloric acid medium. The reaction is first-order with respect to both gold(III) and hydrazinium ion. Hydrogen ion inhibits the oxidation. The mechanism of the reaction is discussed.  相似文献   

5.
Supported gold catalysts have drawn worldwide interest due to the novel properties and potential applications in industries. However, the origin of the catalytic activity in gold nanoparticles is still not well understood. In this study, time-of-flight secondary ion mass spectroscopy (TOF-SIMS) has been applied to investigate the nature of gold in Au (1.3 wt %)/gamma-Al2O3 and Au (2.8 wt %)/TiO2 catalysts prepared by the deposition-precipitation method. The SIMS spectrum of the supported gold catalysts presented AuO-, AuO2-, and AuOH- ion clusters. These measurements show direct evidence for oxidized gold on supported gold catalysts and may be helpful to gaining better understanding of the origin of the catalytic activity.  相似文献   

6.
Simultaneous nucleation of gold nanoparticles and polymerization of tyramine has been carried out at an immiscible electrolyte interface. By transferring the gold ion of tetraoctylammoniumtetracloroaurate (TOAAuCl(4)) from the organic to the aqueous phase, a fast homogeneous electron transfer from the tyramine monomer reduces the gold ion. Electropolymerization then proceeds, and gold nanoparticles form. The newly formed nanoparticles act as nucleation sites for the deposition of the oligomers/polymer (and possibly vice versa). This results in gold nanoparticles stabilized in a polytyramine matrix. The size of the nanoparticles is controlled by the concentration of oligomers/polymer in solution. The polymer nanoparticle composite film was analyzed with TEM, XPS, and AFM.  相似文献   

7.
We have constructed a fast-responsive fluorescent gold ion probe based on the unexpected gold ion-mediated hydrolysis of acylsemicarbazides to carboxylic acids. The probe has been applied for sensing gold ions in the living cells and detecting residual gold content in gold-catalyzed synthetic samples for the first time.  相似文献   

8.
Static secondary ion mass spectrometry (SIMS) is a powerful technique for identification and localization of pigments and binding media present in traditional paintings. Coating the surface of a cross‐section with a 20 Å thick gold layer improves the yields of secondary ions from the fatty acids and diacids. A chalk tablet containing 1% stearic acid, which was partially covered during gold deposition, is used as a test system to investigate the increase of the organic secondary ion yields upon gold deposition in SIMS imaging. A comparative study of a native and gold‐coated aged surface of a lead white‐containing linseed oil paint demonstrates the enhancement of the organic ion yields on a sample relevant for painting studies. The yields of oil paint‐derived negative ions increase by a factor of 3 whereas the yields of positive ions increase by a factor of 2–4. The different types of charged functional groups determine the degree of improvement in yield. Gold coating improves the ionization process of the fatty acids and does not influence their fragmentation. The dissociation of the lead white by the primary ion beam is reduced due to the gold coating. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
《Analytical letters》2012,45(18):2938-2950
Abstract

A novel electrode modified with oligonucleotide and microporous gold was fabricated for the determination of mercury by differential pulse adsorptive stripping voltammetry (DPAdSV). Microporous gold was synthesized by electrochemical reduction using dynamic hydrogen bubble template. The oligonucleotide was immobilized on microporous gold by self-assembly. The prepared electrode exhibited an improved electrochemical response for mercury(II) ion because of the large surface area and excellent electron transfer capacity provided by microporous gold and the specific coordination between mercury ion and thymine bases in oligonucleotides. Under the optimal experiment conditions, the oligonucleotide functionalized microporous gold electrode had a linear relationship between the stripping current and mercury ion concentration in the range from 0.5 to 30?µg/L with a detection limit of 0.021?µg/L. Moreover, the prepared electrode exhibited good selectivity, reproducibility, repeatability and stability. Furthermore, the prepared electrode was applied to detect mercury in tap water with satisfactory results.  相似文献   

10.
讨论了含偕胺肟基螯合纤维对Au^3 的还原过程及螯合与还原反应间的关系。结果表明,含偕胺肟基螯合纤维在吸附Au^3 的过程中,功能基螯合Au^3 之后再将其部分还原成单质金,而偕胺肟基则先被氧化成酰氨基进而变成羧基,吸附了Au^3 的纤维经径高温灼烧后合理使可得到海绵金。  相似文献   

11.
Dong S  Yang X 《Talanta》1996,43(7):1109-1115
A method for the precise coulometric titration of gold (III) with electrogenerated chlorocuprous ion in KCl-Cu-EDTA buffer medium is described. 7.45-16.8 mg of gold can be determined with potentiometric end-point detection (RSD = 0.04%). The method is applied to precise analysis of gold in pure gold, jewellery and gold alloys with good selectivity. The mechanism of electron exchange at the gold-plated platinum cathode-electrolyte interface during the process of titration and the reversibility of the electrode in the proposed electrolyte are discussed.  相似文献   

12.
We report about a new kind of directly heated gold electrode. All electrodes including a directly heated gold loop electrode, a Ag pseudo reference, and a carbon counter electrode have been screen-printed on a ceramic alumina substrate. Thermal behaviour was studied by potentiometry using either an external or the integrated reference electrode. Stripping voltammetric copper signals were greatly improved at elevated deposition temperature. Secondary ion mass spectrometric studies (ToF-SIMS) revealed that different negative ionic species of copper complexes can be found on the gold electrode surface as a result of ion bombardment during SIMS analysis like Cu?, CuCl? and CuCl2 ?. SIMS surface imaging using a fine focussed ion beam over the surface allowed us to obtain ion images (chemical maps) of the analyzed sample. SIMS depth profile analysis of the gold loop electrode was performed after copper deposition at room temperature (23 °C) and at 60 °C. CuCl2 ? ion was used for the depth profile studies as it has shown the highest intensity among other observed species. Surface spectroscopic analysis, surface imaging and depth profile analysis have shown that the amount of deposited copper species on the gold loop electrode was increased upon increasing electrode temperature during the deposition step. Therefore, the presence of chloride in the solution will hinder underpotential deposition of Cu(0) and lead to badly defined and resolved stripping peaks.  相似文献   

13.
A strong influence of bromide ion was found on voltammetry of layered films of photosynthetic reaction center (RC) protein and polyions on gold electrodes. Similar, but not identical, cyclic voltammetry peaks were observed for polyion films on gold with and without RC when the buffer solutions contained bromide ion. CVs of RC films were quite different in the absence of bromide. These new findings suggest that previously published results were biased by significant background peaks involving bromide ion adsorption/desorption.  相似文献   

14.
Li  ShuoQi  Liu  Lu  Hu  JingBo 《中国科学:化学(英文版)》2012,55(9):1940-1945
An NH2+ ion implantation-modified indium tin oxide film was prepared and the implantation of amino groups on the indium tin oxide substrate was verified by X-ray photoelectron spectroscopy analysis.The gold nanoparticles attached surface could be obtained by self-assembly of different sized colloidal gold nanoparticles onto the NH2+ ion implantation-modified indium tin oxide surface.By scanning electron microscopy and electrochemical techniques,the as-prepared AuNPs attached NH2+ ion implantation-modified indium tin oxide electrode was characterized and compared with bare indium tin oxide electrode.Using a [Fe(CN)6]3 /[Fe(CN)6]4 redox probe,the increasingly facile heterogeneous electron transfer kinetics resulting from the attached gold nanoparticle arrays was observed.The gold nanoparticle arrays exhibited high catalytic activity toward the electro-oxidation of nitric oxide,which could provide electroanalytical application for nitric oxide sensing.  相似文献   

15.
Mixing aqueous dispersions of thiocyanate ion coated small (< 3.5 nm diameter) gold nanoparticles and EDTA covered larger (> 22 nm diameter) silver nanoparticles, results in the formation of robust gold encased silver nanoparticles; in contrast to using larger (> 11 nm diameter) gold nanoparticles which forms chained structures.  相似文献   

16.
In this report, we propose a novel starch-mediated photochemical reduction method for synthesizing micrometer-sized gold nanoplates and the possibility of using them as a tip-enhanced Raman scattering (TERS) substrate. To reduce gold ions, a starch chain firstly forms a complex with AuCl(4)(-), and the gold ion is subsequently reduced by receiving an electron from a chloride ion and generating a chloride radical when the [AuCl(4)(-)-starch] complex is irradiated by sunlight. Due to the slow reaction rate and the capability of starch as a template, gold structure can thermodynamically grow along the (111) facet which is the lowest energy facet of the gold face-centered cubic (fcc) crystal. This method can provide various shapes of gold plates such as triangle, truncated triangle, hexagon, polygon, etc. The plate size can be controlled in the range from a few micrometers to more than one hundred micrometers by increasing the acidity of solution while the plate thickness is less than 100 nm. Potential application of the gold plates as TERS substrates is demonstrated by collecting Raman signals while approaching a silver-coated tungsten tip to the surface of the micrometer-sized gold nanoplate covered by crystal violet (CV) molecules. The results show that less than one hundred CV molecules can be detected in our study.  相似文献   

17.
The activity of gold/titania catalysts for the room-temperature oxidation of CO can be dramatically enhanced by the addition of sulfate ions to the support; it appears that anion promotion of gold may be a general phenomenon and may be related to the direct modification of active gold sites in the case of sulfate ions, as evidenced by secondary ion mass spectrometry.  相似文献   

18.
DNA-nanotube artificial ion channels   总被引:4,自引:0,他引:4  
There is considerable interest in developing chemical devices that mimic the function of biological ion channels. We recently described such a device, which consisted of a single conically shaped gold nanotube embedded within a polymeric membrane. This device mimicked one of the key functions of voltage-gated ion channels: the ability to strongly rectify the ionic current flowing through it. The data obtained were interpreted using a simple electrostatic model. While the details are still being debated, it is clear that ion-current-rectification in biological ion channels is more complicated and involves physical movement of an ionically charged portion of the channel in response to a change in the transmembrane potential. We report here artificial ion channels that rectify the ion current flowing through them via this "electromechanical" mechanism. These artificial channels are also based on conical gold nanotubes, but with the critical electromechanical response provided by single-stranded DNA molecules attached to the nanotube walls.  相似文献   

19.
The process of development of reliable and eco-friendly metallic nanoparticles is an important step in the field of nanotechnology. To achieve this use of natural sources like biological systems becomes essential. In the present, work we have investigated extracellular biosynthesis of gold nanoparticles using Sargassum wightii and have achieved rapid formation of gold nanoparticles in a short duration. The UV-vis spectrum of the aqueous medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. Transmission electron microscopy (TEM) showed formation of well-dispersed gold nanoparticles in the range of 8-12 nm. X-ray diffraction (XRD) spectrum of the gold nanoparticles exhibited Bragg reflections corresponding to gold nanoparticles.  相似文献   

20.
Stimulated by the interest in developing gold compounds for treating cancer, gold ion–angiotensin peptide interactions are investigated by mass spectrometry. Under the experimental conditions used, the majority of gold ion–angiotensin peptide complexes contain gold in the oxidation states I and III. Both ESI-MS and MALDI-TOF MS detect singly/multiply charged ions for mononuclear/multinuclear gold-attached peptides, which are represented as [peptide + a Au(I) + b Au(III) + (e - a -3b) H]e+, where a,b ≥ 0 and e is charge. ESI-MS data shows singly/multiply charged ions of Au(I)-peptide and Au(III)-peptide complexes. This study reveals that MALDI-TOF MS mainly detects singly charged Au(I)-peptide complexes, presumably due to the ionization process. The electrons in the MALDI plume seem to efficiently reduce Au(III) to Au(I). MALDI also tends to enhance the higher polymeric forms of gold-peptide complexes regardless of the laser power used. Collision-induced dissociation experiments of the mononuclear and dinuclear gold-attached peptide ions for angiotensin peptides show that the gold ion (a soft acid) binding sites are in the vicinity of Cys (a soft ligand), His (a major anchor of peptide for metal ion chelation), and the basic residue Arg. Data also suggests that the abundance of gold-attached peptides increases with higher gold concentration until saturation, after which an increase in gold ion concentration leads to the aggregation and/or precipitation of gold-bound peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号