首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The resonance fluorescence of the transition 5d 2 D 5/2?5p 2 P 3/2 (λ=3256Å) in the In I-spectrum was observed as a function of an external magnetic field. From the level crossing signals the following values of the hyperfine constantsA andB of the 5d 2 D 5/2-state were deduced: ¦A¦=148(8) Mc/sec·g J/1.2 and ¦B/A¦≦0.3. The widths of the signals yielded the mean lifetimet=7.1 (6)·10?9 sec · 1.2/g J . From the shifts of the signals caused by a constant electric field parallel to the magnetic field the value of the Stark parameter ¦β¦=0.19(4) Mc/sec/(kV/cm)2 ·g J /1.2 and the sign of the ratioA/β<0 were determined. Calculations with Coulomb wave functions show that the Stark shifts of the electric field are mainly due to admixtures of the 6p 2 P 3/2-state.  相似文献   

2.
The resonance fluorescence of the transitions 3d 2 D 5/2,3/2 3p 2 P 3/2,1/2 in the Al I-spectrum was observed as a function of a magnetic field. Adding an electric field parallel to the magnetic field the shifts of level crossing signals caused by the Stark effect of the electric field were used to separate overlapping signals of the 3d 2 D 5/2- and 3d 2 D 3/2-states. The following values of the Stark parametersβ of both states and the hyperfine structure constantsA andB of the 3d 2 D 3/2-states were deduced: 3d 2 D 3/2∶ ¦A¦=99(1) Me/sec · gJ/0,8,B/A=?0,22(12), ¦β¦=0.45 (8) Mc/sec/(kV/cm)2 · gJ,/0.8, A/β< 0 3d2D5/2∶ ¦β¦=0.16 (4) Mc/sec/(kV/cm)2 · gJ/1.2, A/β>0. Some qualitative aspects of interconfiguration mixing in the 3d2D-states are discussed.  相似文献   

3.
The influence of an electric field on the energy levels of the 6d2D3/2-state in the Tl I-spectrum was studied by measuring the shifts of level crossing signals relative to their magnetic field positions. The following values of the magnetic hyperfine constantA and the Stark parameterβ were deduced: ¦A¦=42(2) Mc/sec · gJ/0.8, ¦β¦=0.12(1) Mc/sec/(kV/cm)2 · gJ/0.8 and A/β>0. Assuming that the main part of the energy shifts are caused by admixtures of the 7p2P-states the sign of the Stark parameterβ and —from the measured ratio A/β>0 —the sign of theA-factor should be negative. For electric field strength E?30 kV/cm the energy shifts of the 6d2D3/2state are considerably greater than the hyperfine structure splitting. Therefore the case of decoupled hyperfine structure is considered.  相似文献   

4.
Using the atomic beam magnetic resonance method, the five hyperfine structure separations in the 4f 3 6s 2 4I9/2 ground state of 59 141 Pr have been measured. The results are:F F′ E FF′ * /h (MHz) 7 6 6477.913423(17) 6 5 5556.359848 (6) 5 4 4633.023306 (2) 4 3 3708.201146 (5) 3 2 2782.190601(15) From these quantities, the multipole interaction constantsA k,k=1, 2, 3, 4 between the nucleus and the electron shell have been calculated.A 4 especially then served to give the following limit for the intrinsic hexadecapole moment: ¦Q 40¦<0.4eb 2. Furthermore, theg J -factors of the4 I multiplet have been measured at magnetic fields of 300 Oe. The results are:g J(4 I 9/2)=0.7310371(15)g J(4 I 11/2)=0.9651476(20)g J(4 I 13/2)=1.1063197(40)g J(4 I 15/2)=1.197963 (30) Small corrections due to perturbations by neighbouring fine structure levels are included.  相似文献   

5.
Observing the resonance fluorescence of the transition 7d 2 D 3/2-6p 2 P 1/2 (λ=2379 Å) in the Tl I-spectrum the level crossing technique with combined electric and magnetic fields was used to investigate the hyperfine structure and the Stark effect of the 7d 2 D 3/2-state. For electric field strengthsE?25 kV/cm the Stark shifts are considerably greater than the hyperfine splitting. Therefore the crossing signals for the case of decoupled hyperfine structure could be detected. The following values of the magnetic hyperfine constantA and the Stark parameterβ were deduced: ¦A¦=55(1) Mc/sec·g J /0.8, ¦β¦=0.20(4) Mc/sec/(kV/cm)2·g J /0.8 andA/β>0. The widths of the signals yielded the mean lifetimeτ=2.7(5)·10?8 sec· 0.8/g J . Sign and values ofA andβ are discussed.  相似文献   

6.
In the linearly polarized radiation field of a 442 nm He-Cd laser containing a natural isotope mixture, saturation-induced mode-crossing signals of the 4d 95s 2 2 5/2 state of Cd II are observed due to the even as well as the odd isotopes. The signal width of about 10?4 T yields high resolution. Thus the signal splitting respective to the magnetic quantum number can be resolved. Theg J - andg F -factors of the2 D 5/2 state are determined as follows:g J=1.1980±0.0036,g F(F=2)=1.397±0.008,g F(F=3)=1.002±0.009.  相似文献   

7.
In an atomic beam experiment Ba-atoms were excited in the metastable levels of the 6s 5d-configuration by optical pumping and electron impact. The three states 6s 5d 1 D 2 and3 D 1,2 were populated by optical excitation of the 6s 6p 1 P 1- and3 P 1-level resp., which decay partly into the metastable states. The1 D 2- and3 D 3-level could be excited and aligned by impact of 50 eV-electrons. Radiofrequency transitions between Zeemansublevels were detected by resonance scattering of light and theg J-values of the four 6s 5d-levels were measured:g J(1D 2)=1.0032 (2),g J(3D 1)=0.4986 (2),g J(3D 2)=1.1638 (2) andg J(3D 3)=1.3341 (2).  相似文献   

8.
The level-crossing technique with combined electric and magnetic fields was used to investigate the hyperfine structure of the 5s 25d 2 D 3/2- and 5s 26d 2 D 3/2-stedes of the In I-spectrum. From the shifts of the level-crossing signals due to the Stark effect of the electric field the Stark constantsβ of both states were deduced: 5s 25d 2 D 3/2: ¦β¦=0.33(3) Mc/(kV/cm)2 5s 26d 2 D 3/2: ¦β¦=6(1) Mc/(kV/cm)2. By theoretical calculations with wave functions of the Coulomb approximation one can show, that the Stark effect in both states is mainly due to admixtures of the 5s 26p- resp.5s 27p-configuration.  相似文献   

9.
The magnetic and electric hyperfine splitting frequencies ¦gμ N B HF/h¦ ande 2 qQ/h of the 5/2?1/2[541] ground state of 14h 185Ir in Ni were measured with nuclear magnetic resonance on oriented nuclei to be 360.8(7) MHz and +6.7(2.0) MHz, respectively. The ground state magnetic dipole moment and electric quadrupole moment of185Ir are deduced to be ¦μ¦=2.601 (14)μ N andQ=?1.9(5)b, taking values for the hyperfine field and electric field gradient of BHF=?454.9 (2.3) kG and eq=?0.151(4) × 1017 V/cm2, respectively. The negative quadrupole moment is in agreement with nuclear-orientation data and proves again theI π K=5/2? 1/2 ground state configuration.  相似文献   

10.
Theg-factor of theJ π=21/2+ isomeric state in111In (T 1/2=13.3 ns) and of theJ π=6+ isomeric state in112Sn (T 1/2=13.7 ns) were measured using the spin rotation method. The result obtained for theJ π=21/2+ level in111In,g=+0.47 (2), indicates that this state has an almost pure ((πg 9/2)?1 νg 7/2 νd 5/2) shell model configuration. The experimental valueg=+0.04 (3) for theJ π=6+ isomer in112Sn agrees with the theoretical value calculated within the frame of the BCS model.  相似文献   

11.
The level crossing method has been used for the investigation of the hyperfine structure of the 6p2P3/2 and 7p2P3/2 levels of the isotopes Cs133, Cs135, and Cs137. For the hyperfine coupling constants a and b and for the lifetimes Τ we find: a(6p Cs133)=50.72(3) gJ/?1.345, b(6p Cs133)=?0.38(18) gJ/?1.345 a(7p Cs133)=16.610(6) gJ/?1.3349, b(7p Cs133)=?0.15(3) gJ/?1.3349 a(6p Cs135)=53.64(4) gJ/?1.345, b(6p Cs135)=7.41(32) gJ/?1.345 a(7p Cs135)=17.570(6) gJ/?1.3349, b(7p Cs135)=2.35(7) gJ/?1.3349 a(6p Cs137)=55.80(4) gJ/?1.345, b(6p Cs137)=7.54(20) gJ/?1.345 a(7p Cs137)=18.274(6) gJ/?1.3349, b(7p Cs137)=2.37(4) gJ/?1.3349 (MHz), Τ(6p2P3/2)=29.7(2) ?1.345/gJ ns, Τ(7p2P3/2)=135(1) ?1.3349Jns. From a comparison with double resonance results the gJ factor of the 7p2P3/2 level was deduced: gJ(7p2P3/2=?1.3349(10). Level crossing measurements in the 8p2P3/2 state of Cs133 give for the gJ factor and the lifetime the following results: gJ(8p2P3/2)=?1.3353(14), Τ(8p2P3/2)=310(15) ns. Using recently calculated relativistic correction factors and applying corrections for core polarization and the Sternheimer effect, we obtain for the quadrupole moments: Q(Cs133)=?0.0030 b, Q(Cs135)=+0.052 b, Q(Cs137)=+0.052 b.  相似文献   

12.
The three proton-hole states ?2d5/2, 1g7/2 and 1g9/2 are found to be fragmented as a result of coupling of these states with the 3?, 5?, 2+, 4+ and 6+ collective states of208Pb. The excited states in208Pb (t,α) reaction can be quantitatively explained in terms of altered 2d5/2, 1g7/2 and 1g9/2 states with the hole-core coupling model.  相似文献   

13.
The hyperfine structures of the 62 P 3/2- and 82 P 3/2-states of133Cs have been investigated by optical double resonance in a strong magnetic field. The Landé-g-factors and the hfs coupling constants were found to be:g J(62 P 3/2)=1.3340(3)g J(82 P 3/2)=1.3342(2)a(62 P 3/2)=50.02(25) MHza(82 P 3/2)=7.644(25) MHz. Contrarily to recent measurements, theg J-factors agree well with the value calculated from the Landé formula.  相似文献   

14.
Electron spin resonance in a single-ground-state magnet, NiSnCl6·6H2O, has been studied at temperatures between 83 mK and 4.2 K. Below 1 K, the resonance lines show marked shifts, which can be described quantitatively in terms of exchange shift due to polarization effects treated by McMillan and Opechowski. The shifts give 2J = ?(0.55 ± 0.15) × 10?2 cm?1 for the antiferromagnetic exchange interaction among the Ni2+ ions in this crystal. The value of 2J is sub-critical in the sense that no spontaneous long-range order can be expected in this singlet-ground-state magnet.  相似文献   

15.
The hyperfine structure of the 62 P 1/2-state of133Cs has been measured by optical double resonance in a strong magnetic field. From the positions of the magnetic dipole transitionsδm J =±1,δm I =0 theg J -factorg J(62 P 1/2)=0.66590(9) and the magnetic hfs-coupling constanta(62 P 1/2)=291.90(12) MHz could be derived.  相似文献   

16.
The energies and spectroscopic factors ofJ π=5/2+ states of nucleus91Nb excited via a reaction transferring a proton to the 2d 5/2 orbit of90Zr target state have been calculated. Effective two-body interaction used has been extracted from the experimentally observed two-body energies of (1g 9 2/?1 (n) 2d 5/2(n)), (1g 9 2/?1 (n) 1g 9/2(p)) and (1g 9/2(p)-2d 9/2(n)) multiplets in90Zr,90Nb and92Nb nuclei respectively. Most of the calculated energies and the strengths ofJ π=5/2+ levels have reasonably good counterparts in the experimental spectrum, however the calculation shows about 17% strength lying at 6.8 MeV, without having a confirmed counterpart in the observed level scheme. The reduced transition strengthsB(M1) forM l transitions from 5/2? T>(11/2) state to the various components of 5/2+ T<(=9/2) state have also been reported; but the corresponding experimental values are not available. The main feature of the reduced transition strengths is that theM1 transition to the state at 3.69 MeV is inhibited whereas that to the state at 6.79 MeV is enhanced, the relevant core-configuration, interfering destructively in the former case and constructively in the latter.  相似文献   

17.
Using the atomic beam magnetic resonance method and using the technique of separated oscillatory fields in combination with the triple resonance method the ratiosg I /g J of the stable alkali isotopes Li, Na and K in the2S1/2-ground state have been measured at magnetic fields of about 3 kOe. Frequency shifts analogous to the Bloch-Siegert-shift, expected from theory, were observed and eliminated by extrapolation to vanishing rf-field strength. The results, uncorrected for atomic diamagnetism, are:6Li:g I /g J =?0.22356978(10)·10?3 7Li:g I /g J =?0.59042719(10)·10?3 23Na:g I /g J =?0.40184406(40)·10?3 39K:g I /g J =?0.07088613 (6)·10?3 41K:g I /g J =?0.03890837 (4)·10?3 Furthermore, the hyperfine structure splitting constants in the2 S 1/2-ground states have been determined. Using the most precise absoluteg J -values available so far one can calculate absolute values for the uncorrectedg I - factors. The results are:Δν/MHz ?g I·103 6Li: 228.2052590(30) 0.4476540 (3)7Li: 803.5040866(10) 1.1822130 (6)23Na: 1771.6261288(10) 0.8046108 (8)39K: 461.7197202(14) 0.14193489(12)41K: 254.0138720(20) 0.07790600 (8) By comparing the absoluteg I - factors with measurements received by the NMR-method, the chemical shifts of the NMR-frequencies caused by the hydrate surrounding of the alkali ions in the NMR-probe are determined.  相似文献   

18.
The reaction γ pJp has been studied in ep interactions using the ZEUS detector at HERA. The cross section for elastic J/ψ photoproduction has been measured as a function of the photon-proton centre of mass energy W in the range 40 < W < 140 GeV at a median photon virtuality Q 2 of 5 × 10?5 GeV2. The photoproduction cross section, σγp→ J/ψp, is observed to rise steeply with W. A fit to the data presented in this paper to determine the parameter δ in the form σγp→ J/ψp α W δ yields the value δ = 0.92±0.14±0.10. The differential cross section dσ/d ¦t¦is presented over the range ¦t¦< 1.0 GeV2 where t is the square of the four-momentum exchanged at the proton vertex. dσ/d ¦t¦falls exponentially with a slope parameter of $4.6pm 0.4_{-0.6}^{+0.4} {? GeV}^{-2}$. The measured decay angular distributions are consistent with s-channel helicity conservation.  相似文献   

19.
With the Mössbauer technique, the hyperfine splittings of the lowest 2+-states of some Dy-, Er-, and Yb-isotopes were observed at 4.2 °K in the paramagnetic compounds Dy-Al-garnet, ErCl3·6H2O, and YbCl3·6H2O. Most of the sources were produced by photonuclear reactions. Ratios ofg-factors for neighbouring isotopes could be determined with small systematic errors. The results are:g 164/g 166=1.103 (15),g 166/g 168=0.960 (13) for Er, andg 170/g 172=1.009 (15),g 170/g 174=0.994 (13) for Yb. Using known values for the effective magnetic fields at the nuclei, the followingg-factors were obtained:164Dy 0.336 (14),164Er 0.353 (10),166Er 0.320 (8),168Er 0.333 (8),170Yb 0.335 (6),172Yb 0.332 (8),174Yb 0.337 (8).  相似文献   

20.
The Landé factor gJ of the (6s2 6p 7s)( 3P1 level of the even isotopes of lead has been measured by Fabry-Pérot interferometry. The result is: gJ=1.3500(4). The agreement with the previously measured hyperfine splitting of this level for the isotope 207Pb and with the level crossing results is good when small corrections (nuclear Zeeman interaction, second-order hyperfine and Zeeman corrections) are taken into account. The corrected hyperfine dipole coupling constant for this level of 207Pb is: A=293.60(13) mK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号