首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lattice dynamics, second and third order elastic constants and the lattice thermal expansion of dysprosium have been calculated using Keating's approach. The ten third order elastic constants are calculated using four anharmonic parameters. The present model reproduces the measured pressure derivatives of the second order elastic constants of dysprosium well. The low and high temperature limits γ?I and γ?H of the lattice thermal expansion are evaluated and the agreement between the calculated γ?H and that obtained from the thermal expansion and specific heat data is satisfactory.  相似文献   

2.
A systematic investigation of the lattice dynamics, second and third order elastic constants and the temperature variation of the effective Grüneisen functions has been carried out in gadolinium using Keating's approach. The ten third order elastic constants are calculated using five anharmonic parameters. The present model reproduces the measured pressure derivatives of the second order elastic constants of gadolinium well. The low and high temperature limits ggL and ggH of the lattice thermal expansion are evaluated. The agreement between the calculated ggH and that obtained from the thermal expansion and specific heat data of gadolinium is good.  相似文献   

3.
Thermal expansion coefficient between 77 and 900K, isothermal compressibility in the 0–80 Kbar pressure range, magnetic susceptibility between 77 and 1300 K and heat capacity at constant pressure in the 20–300 K temperature range were determined for the LaSn3 compound. From the experimental data, the specific heat at constant volume was calculated and the thermal dependence of the Debye's parameter θD was obtained. The electron contribution to the heat capacity was also determined from the high temperature data. The magnetic properties confirm that there is no evidence of the existence of a magnetic moment localized on La atoms, in contrast with a previous report and in agreement with the general assumptions. A little anomaly found in the expansion coefficient, in the isothermal compressibility and in the specific heat is discussed in terms of a lattice order-disorder phenomenon.  相似文献   

4.
The lattice dynamics, second and third order elastic constants, pressure derivatives of the second order elastic constants and the temperature variation of the lattice thermal expansion of Cadmium have been worked out utilising Keating's approach. The ten TOE constants are calculated using four anharmonic parameters. The model used here reproduces the measured pressure derivatives of the SOE constants of Cadmium extremely well. The low temperature limit of the volume Gruneisen function γL is found to be nearer to the value of Andres. The high temperature limit γv(T) is in good agreement with the value calculated by Gschneidner Jr. from the Cv data for Cadmium. The lattice dynamics of Cadmium is found to be essentially similar to that of Zinc.  相似文献   

5.
A systematic investigation of the lattice dynamics, second and third order elastic constants and thermal expansion has been carried out in rhenium using Keating's approach. The ten third-order elastic constants of rhenium are calculated using four anharmonic parameters. The present model reproduces the measured pressure derivatives of the second order elastic constants well. The low and high temperature limits γ̄L and γ̄H of the lattice thermal expansion are calculated. The agreement between the calculated γ̄H and that obtained by Gschneidner from the thermal expansion and specific heat data of rhenium is satisfactory.  相似文献   

6.
ABSTRACT

We report extensive molecular dynamics simulation results of pure methane and carbon dioxide hydrates at pressure and temperature conditions that are of interest to various practical applications. We focus on the calculation of the lattice constants of the two pure hydrates and their dependence on pressure and temperature. The calculated lattice constants are correlated using second order polynomials which are functions of either temperature or pressure. Finally, the obtained correlations are used in order to calculate two derivative properties, namely the isothermal compressibility and the isobaric thermal expansion coefficient. The current simulation results are also compared against reported experimental measurements and other simulation studies and good agreement is found for the case of isothermal compressibility. On the other hand, for the case of isobaric thermal expansion coefficient good agreement is found only with other simulation studies, while the simulation studies are in disagreement with experiments, particularly at low temperatures.  相似文献   

7.
李世娜  刘永 《物理学报》2010,59(10):6882-6888
利用基于密度泛函理论的第一性原理全势线性缀加平面波方法,研究了立方反ReO3结构Cu3N在零温(0K)零压下的平衡晶格常数、体弹模量及其对压强的一阶导数,计算结果与其他实验及理论结果基本相符.同时得出Cu3N的弹性常数,Poisson比等,并分析出Cu3N在零温零压下是稳定的.通过准谐Debye模型计算Cu3N的热力学性质,得到了Cu3N的晶格常数、等压比热容、等容比热容、热胀系数与温度和压强之间的关系,同时计算出不同温度不同压强下其体弹模量及Debye温度的值。  相似文献   

8.
The elastic constants and thermodynamic properties of Li2O for high temperatures and pressures are calculated by the ab initio unrestricted Hartree-Fock (HF) linear combination of atomic orbital (LCAO) periodic approach. The lattice constant, elastic constants, Debye temperature, and thermal expansion coefficient obtained are in good agreement with the available experimental data and other theoretical results. It is found that at zero pressure the elastic constants C11, C12 and C44, bulk modulus B and Debye temperature ΘD decrease monotonically over the wide range of temperatures from 0 to 1100 K. When the temperature , C12 approaches zero, consistently with the transition temperature 1200 K. However, with increasing pressure, they all increase monotonically and the anisotropy will weaken.  相似文献   

9.
Structural, elastic, electronic and thermal properties of the MAX phase Nb2SiC are studied by means of a pseudo-potential plane-wave method based on the density functional theory. The optimized zero pressure geometrical parameters are in good agreement with the available theoretical data. The effect of high pressure, up to 40 GPa, on the lattice constants shows that the contractions along the c-axis were higher than those along the a-axis. The elastic constants Cij and elastic wave velocities are calculated for monocrystal Nb2SiC. Numerical estimations of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, average sound velocity and Debye temperature for ideal polycrystalline Nb2SiC aggregates are performed in the framework of the Voigt-Reuss-Hill approximation. The band structure shows that Nb2SiC is an electrical conductor. The analysis of the atomic site projected densities and the charge density distribution shows that the bonding is of covalent-ionic nature with the presence of metallic character. The density of states at Fermi level is dictated by the niobium d states; Si element has a little effect. Thermal effects on some macroscopic properties of Nb2SiC are predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the primitive cell volume, volume expansion coefficient, bulk modulus, heat capacity and Debye temperature with pressure and temperature in the ranges of 0-40 GPa and 0-2000 K are obtained successfully.  相似文献   

10.
In this work, we study elastic and thermodynamic properties of VH2 at different pressures and temperatures. Elastic constants and bulk modulus of VH2 decrease with increase in temperature, and hence increase with pressure. Thermal expansion of the crystal lattice will be suppressed by high pressure. When the temperature is 1500 K, 15.99 GPa of pressure can completely restrain the volume expansion caused by temperature. At a given pressure, the lower the temperature, the easier the cell compression. At low temperatures, Cv is proportional to T3, and Cv tends to the Dulong-Petit limit at higher temperatures. The Debye temperature increases with pressure, but decreases with temperature. At low temperature and low pressure, thermal expansion coefficient increases sharply with temperature. At high temperature and high pressure, the increasing trend slows down.  相似文献   

11.
The Grüneisen parameter and lattice thermal expansion of the A-15 compounds V3Si and V3Ge at room temperature are evaluated on the basis of the method due to Brugger and Fritz [1] from the third order elastic constants reported earlier [2]. The calculated values are compared with available experimental values and are found to fit satisfactorily.  相似文献   

12.
Molecular dynamics (MD) method is used to investigate the behavior of the pressure-volume-temperature (P-V-T) relationship, lattice constant and thermal expansivity for ZnO with rock-salt structure at high pressures and temperatures. The interionic potential is taken to be the sum of pair-wise additive Coulomb, van der Waals attraction, and repulsive interactions. The isothermal and isobaric properties are discussed from the corresponding P-V-T relationship, and it is shown that the MD simulation is successful in reproducing the measured volumes of ZnO over a wide range of temperature and pressure. Meanwhile, the equations of state parameters including lattice constant, linear thermal expansion coefficient, and isothermal bulk modulus are calculated and compared with the available experimental data and the latest theoretical results. At an extended pressure and temperature range, P-V-T relationship, lattice constant, and linear thermal expansion coefficient have been predicted. The structural and thermodynamic properties of ZnO with rock-salt structure are summarized in the pressure 0-100 GPa ranges and the temperature up to 3100 K.  相似文献   

13.
We present the calculation of the lattice dynamics of chromia (Cr2O3), a typical Mott–Hubbard insulator, employing the first-principles density functional theory plus U approach. We first report the phonon dispersions at the theoretical equilibrium volume. Then the phonon density-of-states is calculated as a function of volume. Finally, the atomic volume, heat capacity, linear thermal expansion coefficient, bulk modulus, Grüneisen constant, and elastic constants are calculated as functions of temperature.  相似文献   

14.
The temperature dependence of the thermal expansion for GaAs and InP is investigated theoretically using the experimental pressure derivatives of elastic stiffness constants and phonon frequencies. The linear correlation between the transverse acoustical mode Grüneisen parameter γXTA and the metallic transion pressure Pt obtained by Weinstein is not satisfied for GaAs and InP, but the observed thermal expansion of GaAs is well reproduced. In addition, the linear expansion coefficient of InP is predicted theoretically as a function of temperature. Then, the phonon dispersion curves of GaAs and InP at their covalent-metallic transition pressures are quantitatively shown.  相似文献   

15.
We have performed theoretical studies on the elastic and thermodynamic properties of the solid solution: Ti2AlC0.5N0.5. The lattice parameters, elastic constants, bulk, shear, Young's moduli, Poisson's ratio and Debye temperature were calculated and compared with those of the end members, Ti2AlC and Ti2AlN. The temperature dependence of the bulk moduli, thermal expansion coefficient and specific heats of Ti2AlC0.5N0.5 were obtained from the quasi-harmonic Debye model. The calculated elastic and thermodynamic properties were compared with experimental data.  相似文献   

16.
The structural parameters, elastic constants, thermodynamic properties of Imm2-BN under high pressure were calculated via the density functional theory in combination with quasi-harmonic Debye approach. The results showed that the pressure has the significant effect on the equilibrium lattice parameters, elastic and thermodynamic properties of Imm2-BN. The obtained ground state structural parameters are in good agreement with previous theoretical results. The elastic constants, elastic modulus, and elastic anisotropy were determined in the pressure range of 0–90?GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is evaluated and the elastic anisotropy of the Imm2-BN up to 90?GPa is studied in detail. Moreover, the pressure and temperature dependence of thermal expansion coefficient, heat capacity, Debye temperature, and Grüneisen parameter are predicted in a wide pressure (0–90?GPa) and temperature (0–1600?K) ranges. The obtained results are expected to provide helpful guidance for the future synthesis and application of Imm2-BN.  相似文献   

17.
利用密度泛函理论研究了高温高压下Zr2AlC的结构和热力学性质,计算得到Zr2AlC的晶格参数与实验值符合较好.研究了Zr2AlC的弹性常数、体模量、剪切模量和杨氏模量等力学性质随压力变化的趋势.同时研究了维氏硬度随压力的变化趋势.通过计算得到的杨氏模量预测了Zr2AlC的弹性各向异性.最后,基于准简谐德拜模型,成功预测了Zr2AlC的德拜温度、热容、热膨胀系数和Grüneisen参数随着压强和温度的变化关系.  相似文献   

18.
王斌  刘颖  叶金文 《物理学报》2012,61(18):186501-186501
利用基于密度泛函理论的第一性原理平面波赝势方法 并结合准谐徳拜模型研究了NaCl结构的TiC在高压下的弹性性质、电子结构和热力学性质. 计算所得零温零压下的晶格常数、体弹模量及弹性常数与实验值符合得很好. 零温下弹性常数和弹性模量随压强增大而增大. 通过态密度和电荷密度的分析, Ti-C键随压强增大而增强. 运用准谐德拜模型, 成功计算了TiC在高温高压下的体弹模量、熵、热膨胀系数、徳拜温度、 Grüneisen参数和比热容. 结果表明压强对体弹模量、热膨胀系数和徳拜温度的影响大于温度对其的影响. 热容随着压强升高而减小, 在高温高压下, 热容接近Dulong-Petit极限.  相似文献   

19.
The thermal expansion coefficient of solid solutions in the CaLa2S4-La2S3 system at a temperature of 300 K is investigated experimentally. The Debye temperature, the Grüneisen parameter, and the isothermal compressibility coefficient of solid solutions in the system under investigation are determined from the experimental thermal expansion coefficient. It is demonstrated that, upon substitution of calcium ions for cation vacancies in La2S3, the Debye temperature decreases, the isothermal compressibility coefficient increases, and the Grüneisen parameter remains constant for all compositions in the CaLa2S4-La2S3 system. A correlation between the ionic radii of Ca2+ and La3+, the concentration of cation vacancies, and the rigidity of the lattice, on the one hand, and the Debye temperature, the Grüneisen parameter, and the isothermal compressibility coefficient, on the other, is revealed for the studied samples.  相似文献   

20.
The second- and third-order elastic constants and pressure derivatives of second-order elastic constants of tetragonal β-tin have been obtained using the deformation theory. The strain energy density derived using the deformation theory is compared with the strain dependent lattice energy obtained from the elastic continuum model approximation to get the expressions for the second- and third-order elastic constants. Higher order elastic constants are a measure of the anharmonicity of a crystal lattice. The 12 non-vanishing third-order elastic constants and the six pressure derivatives of the second-order elastic constants in tetragonal β-tin are obtained in the present work and are compared with the available experimental values. The second-order elastic constant C33 obtained in the present study is in reasonable agreement with the experimental values. The third-order elastic constants are generally one order of magnitude greater than the second-order elastic constants as expected of a crystalline solid. The third-order elastic constant C333 is higher in magnitude than all other values. This shows a greater anharmonicity of β-tin along the c-axis direction of the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号