首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow core, mesoporous shell carbon nanospheres (HCMSs) with large bimodal mesopores (6.4 and 3.1 nm) and high surface area (1704 m(2) g(-1)) have been synthesized by a triconstituent surface co-assembly of monodisperse silica nanospheres method. The resulted HCMS show a high specific capacity of 251 F g(-1) at 50 mV s(-1) in 2 M H(2)SO(4) and long cyclic life.  相似文献   

2.
Submicron‐scaled cagelike polymer microspheres with hollow core/porous shell were synthesized by self‐assembling of sulfonated polystyrene (PS) latex particles at monomer droplets interface. The swelling of the PS latex particles by the oil phase provided a driving force to develop the hollow core. The latex particles also served as porogen that would disengage automatically during polymerization. Influential factors that control the morphology of the microspheres, including the reserving time of emulsions, polymerization rate, and the Hildebrand solubility parameter and polarity of the oil phase, were studied. A variety of monomers were polymerized into microspheres with hollow core/porous shell structure and microspheres with different diameters and pore sizes were obtained. The polymer microspheres were characterized by scanning electron microscopy, transmission electron microscopy, optical microscopy, and Fourier transform infrared spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 933–941, 2007  相似文献   

3.
Here we report the design and controlled synthesis of monodisperse and precisely size-controllable UCNP@mSiO(2) nanocomposites smaller than 50?nm by directly coating a mesoporous silica shell (mSiO(2)) on upconversion nanocrystals NaYF(4):Tm/Yb/Gd (UCNPs), which can be used as near-infrared fluorescence and magnetic resonance imaging (MRI) agents and a platform for drug delivery as well. Some key steps such as transferring hydrophobic UCNPs to the water phase by using cetyltrimethylammonium bromide (CTAB), removal of the excess amount of CTAB, and temperature-controlled ultrasonication treatment should be adopted and carefully monitored to obtain uniform upconversion core/mesoporous silica shell nanocomposites. The excellent performance of the core-shell-structured nanocomposite in near-infrared fluorescence and magnetic resonance imaging was also demonstrated.  相似文献   

4.
Bimodal mesoporous silica material composed of 30-40 nm sized nanoparticles with 3.5 nm sized three-dimensionally interconnected mesopores was synthesized under neutral conditions using sodium silicate as a silica source. Using the bimodal mesoporous silica as a template, bimodal mesoporous carbon having 4 nm sized framework mesopores and approximately 30 nm sized textural pores was synthesized.  相似文献   

5.
A mesoporous Co(3)O(4) core/mesoporous silica shell composite with a variable shell thickness of 10-35 nm was fabricated by depositing silica on Co(3)O(4) superlatticed particles. The Brunauer-Emmett-Teller (BET) surface area of the composite with a shell thickness of ca. 2.0 nm was 238.6 m(2)/g, which varied with the shell thickness, and the most frequent pore size of the shell was ca. 2.0 nm. After the shell was eroded with hydrofluoric acid, mesoporous Co(3)O(4) particles with a pore size of ca. 8.7 nm could be obtained, whose BET surface area was 86.4 m(2)/g. It is proposed that in the formation of the composite the electropositive cetyltrimethylammonium bromide (CTAB) micelles were first adsorbed on the electronegative Co(3)O(4) particle surface, which directed the formation of the mesoporous silica on the Co(3)O(4) particle surface. Electrochemical measurements showed that the core/shell composites exhibited a higher discharge capacity compared with that of the bare Co(3)O(4) particles.  相似文献   

6.
A novel kind of magnetic core/mesoporous silica shell nanospheres with a uniform particle diameter of ca. 270 nm was synthesized. The inner magnetic core endues the whole nanoparticle with magnetic properties, while the outer mesoporous silica shell shows high enough surface area and pore volume. The synthesized material is expected to be applied to targeted drug delivery and multiphase separation. The storage and release of ibuprofen into and from the pore channels of the mesoporous silica shell, as a typical example, are demonstrated.  相似文献   

7.
Hollow mesoporous silica nanoparticles (HMSNs) with the diameter in range of 100–500 nm and the wall thickness of about 50 nm were synthesized by templates of cetyltrimethylammonium bromide under the assistant of microfluidization technique. These HMSNs were demonstrated effective drug loading and a pH-responsive drug release.  相似文献   

8.
Stable hollow silica microspheres were synthesized by a solgel method in nonionic W/O emulsion; the mesoporous shell wall of the spheres could have potential applications as controlled release capsules for drugs, dyes, cosmetics and inks, artificial cells, catalysts, and fillers.  相似文献   

9.
Hierarchical nanostructured hollow core/mesopore shell carbon (HN-HCMSC) represents an innovative concept in electrochemical hydrogen storage. This work deals with physical characteristics and electrochemical hydrogen storage behavior of the HN-HCMSCs, produced by a replica technique using solid core/mesopore shell (SCMS) silica as template. HN-HCMSCs with various core sizes and/or shell thicknesses have been fabricated through the independent control of the core sizes and/or shell thicknesses of the SCMS silica templates. The superb structural characteristics of the HN-HCMSCs including large specific surface area and micropore volume, and particularly well-developed three-dimensionally interconnected hierarchical nanostructure (hollow macroporous core in combination with meso-/microporous shell), provide them with great potential for electrochemical hydrogen storage. A discharge capacity up to 586 mAh/g, corresponding to 2.17 wt % hydrogen uptake, has been demonstrated in 6 M KOH for the HN-HCMSC with a core size of 180 nm and a shell thickness of 40 nm at a discharge rate of 25 mA/g. Furthermore, the HN-HCMSC also possesses excellent cycling capacity retainability and rate capability.  相似文献   

10.
Carbon capsules with hollow core and mesoporous shell (HCMS) structures were used as a support material for Pt(50)-Ru(50) catalyst, and the catalytic performance of the HCMS supported catalyst in the direct methanol fuel cell was described; the HCMS carbon supported catalysts exhibited much higher specific activity for methanol oxidation than the commonly used E-TEK catalyst by about 80%, proving that the HCMS carbon capsules are an excellent support for electrode catalysts in DMFC.  相似文献   

11.
The architecture of mesoporous silica was successfully controlled by adjusting the concentrations of a cationic surfactant and ammonia. An excess amount of the surfactant suppressed the grain growth and then induced the formation of small grains with a diameter below 20 nm. Consequently, assembly of the small-sized grains produced a bimodal pore structure consisting of framework mesopores of 2-3 nm and textural mesopores ranging over 10-100 nm.  相似文献   

12.
MCM-41-type mesoporous silica nanospheres(MSN) have been prepared using n-cetyltrimethylammonium bromide(CTAB) as a soft template.The pseudo-moire' rotational pattern inside the MSN results in many interior defects.Hollow mesoporous silica(HMS) spheres were synthesized by solvent extraction of the template from MSN.The morphology and structure of MSN and HMS were studied by TEM,XRD and nitrogen sorption techniques.A model drug,bromocresol green dye,was packed inside different regions of HMS through impregna...  相似文献   

13.
本文用十六烷基三甲基溴化铵(CTAB)作为试剂,通过软模板法合成介孔二氧化硅,利用在合成过程中,由伪莫尔转动所引起的微粒内部的大量缺陷,通过溶剂抽提,形成了具有空腔结构的介孔二氧化硅纳米微球.采用透射电子显微镜(TEM)、X射线粉末衍射仪(XRD)、N2吸附-脱附等手段对产物的形貌和结构进行了详细的表征.并以溴甲酚绿作为目标物,通过改变压强和温度,调节溴甲酚绿进入空心SiO2微球中的不同部位,对所制备的空腔介孔二氧化硅微球进行染料的装载和释放试验.结果显示该微球腔壁具有可渗透性和缓释性,而且在负压蒸发溶剂的情况下可以得到较高的药物负载量和极大地提高缓释性能.  相似文献   

14.
Micron-sized hollow silica spheres whose shells are made up of mesocellular silica foams(MCFs) have been synthesized by one-pot sol-gel method in benzene/water/P123 emulsion.The material is characterized with SEM,TEM,BET and ~(29)Si MAS NMR. The results show that the MCFs of the unique shell of hollow silica spheres were connected by large windows with a narrow distribution of~10 nm in diameter,the inner space of the hollow sphere is accessible.And the formation mechanism of the hollow silica spheres is ...  相似文献   

15.
16.
Hollow spheres of phenolic resin/silica composite are synthesized by macroscopic phase separation of a sorbitan monooleate surfactant Span 80 during aerosol-assisted spraying. The cavity can be evolved from multiple compartments to single hollow cavity with the increase of Span 80 content. The composite shell becomes mesoporous due to the release of small molecules after thermal treatment above 350 °C. After further thermal treatment at a higher temperature for example 900 °C in nitrogen or 1,450 °C in argon, the carbon/silica composite hollow spheres or crystalline silicon carbide hollow spheres are derived, respectively. Compared to the pure phenolic resin-based carbon spheres, thermal stability of the carbon-based composite spheres in air is essentially improved by the introduction of inorganic component silica. The carbon-based composite hollow spheres combine both performances of easy mass transportation through macropores and high specific surface area of mesopores, which will be promising to support catalysts for fuel cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Novel urchin-like core/shell composite hollow spheres were fabricated by assembly of nickel nanocones on the surface of hollow glass spheres; the effects of some reaction parameters on the morphology of the shell layers and the room temperature magnetic properties of the products were investigated.  相似文献   

18.
19.
A multi-nanoparticle-embedded amorphous aluminum/magnesium oxides (AAMO) core/mesoporous silica (mSiO(2)) shell structure has been successfully synthesized by calcining the presynthesized catalyst precursor-containing layered double hydroxide (LDH) core/mesoporous silica shell composite. The well-dispersed catalytic nanoparticles were fixed at the interface between AAMO core and mesoporous SiO(2) shell, i.e., at the inner pore mouths of the mesoporous SiO(2) shell, which could effectively prevent nanoparticles from growth and/or aggregation with each other and in the meantime allow efficient access of reactants to the catalytic NPs. The final core/shell composite was found to be an efficient and highly recyclable heterogeneous catalyst.  相似文献   

20.
Combining both nano-replication and nano-imprinting techniques using dual silica templates provides a simple way to synthesize ordered mesoporous carbons with bimodal pore size distributions ( approximately 1.5 nm and approximately 3.5 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号