首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
脉冲准分子激光淀积薄膜的实验研究   总被引:14,自引:0,他引:14       下载免费PDF全文
利用两种脉宽 (30ns,5 0 0fs)的KrF准分子激光展开了淀积类金刚石薄膜的实验研究 ,并且成功地制备了大面积不含氢成分的HF DLC薄膜 ,运用时空分辨的等离子体发射光谱诊断系统和离子探针系统研究了等离子体特性对薄膜性能的影响。尝试了利用准分子激光制备非晶硅薄膜 ,研究了实验参数对非晶硅薄膜制备的影响 ,并分析了制备具有良好电学和光学性能的非晶硅薄膜的条件  相似文献   

2.
脉冲激光淀积高温超导薄膜   总被引:5,自引:0,他引:5  
周岳亮 《物理》1998,27(3):167-173
1987年贝耳实验室首次用脉冲准分子激光制备出高温超导薄膜以后,脉冲激光淀积技术获得了长足的发展,现在已成为最好的薄膜制备技术之一.文章简要介绍了用脉冲激光淀积技术制备高温超导薄膜的原理、特点及发展情况.  相似文献   

3.
4.
本文对脉冲激光法(PLD)制备高温超导薄膜过程中的几个技术问题做了简要介绍  相似文献   

5.
 利用两种脉宽(30ns,500fs)的KrF准分子激光展开了淀积类金刚石薄膜的实验研究,并且成功地制备了大面积不含氢成分的HF-DLC薄膜,运用时空分辨的等离子体发射光谱诊断系统和离子探针系统研究了等离子体特性对薄膜性能的影响。尝试了利用准分子激光制备非晶硅薄膜,研究了实验参数对非晶硅薄膜制备的影响,并分析了制备具有良好电学和光学性能的非晶硅薄膜的条件。  相似文献   

6.
利用两种脉宽(30ns,500fs)的KrF准分子激光展开了淀积类金刚石薄膜的实验研究,并且成功地制备了大面积不含氢成分的HF-DLC薄膜,运用时空分辨的等离子体发射光谱诊断系统和离子探针系统研究了等离子体特性对薄膜性能的影响。尝试了利用准分子激光制备非晶硅薄膜,研究了实验参数对非晶硅薄膜制备的影响,并分析了制备具有良好电学和光学性能的非晶硅薄膜的条件。  相似文献   

7.
XeCl(308nm)脉冲准分子激光淀积类金刚石薄膜   总被引:8,自引:1,他引:8  
利用XeCl(308nm)脉冲准分子激光淀积技术在功率密度5×108W/cm2、室温、真空度10-3Pa的条件下,制备出不含氢成分的类金刚石薄膜,研究了类金刚石薄膜的特性及其随制备工艺条件的变化规律。研究了激光诱导的碳等离子体发射光谱,探讨了类金刚石薄膜的形成机理。  相似文献   

8.
我们采用脉冲激光淀积方法在(100)SrTiO3基底上制备了a-轴取向外延的YBa2Cu3O7-x薄膜.通过采用活性氧,降低氧压和淀积速率,制备出了Tc超过80K、表面平均粗糙度为4.43nm的薄膜.X-射线衍射谱表明,实验得到的YBa2Cu3O7-x外延薄膜是高度A-轴取向的.  相似文献   

9.
景俊海 《物理》1990,19(6):354-355,371
本文简要介绍激光蒸发淀积高Tc超导薄膜技术的基本原理.主要工艺特点,各种激光器在制备高Tc超导薄膜中的应用及所取得的重要成果.  相似文献   

10.
激光淀积YBa2Cu3O7外延超导薄膜   总被引:2,自引:2,他引:2  
利用准分子脉冲激光成功地在(100)SrTiO_3与(100)Y-ZrO_2衬底上淀积了 YBa_2Cu_3O_7超导薄膜,T_c(R=0)>90K,J_c(T<82K)>1×10~6A/cm~2.研究了衬底温度对外延YBa_2Cu_3O_7薄膜超导性能及结构的影响.  相似文献   

11.
One of the most important and promising materials from metal oxides is ZnO with specific properties for near UV emission and absorption optical devices. The properties of ZnO thin films strongly depend on the deposition method. Among them, pulsed laser deposition (PLD) plays an important role for preparing various kinds of ZnO films, e.g. doped, undoped, monocrystalline, and polycrystalline. Different approaches — ablation of sintered ZnO pellets or pure metallic Zn as target material are described. This contribution is comparing properties of ZnO thin films deposited from pure Zn target in oxygen atmosphere and those deposited from sintered ZnO target. There is a close connection between final thin film properties and PLD conditions. The surface properties of differently grown ZnO thin films are measured by secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Furthermore, different approaches — ablation of sintered ZnO pellet or pure metallic Zn as target materials are described. The main results characterize typical properties of ZnO films versus technological parameters are presented. Presented at 5-th International Conference Solid State Surfaces and Interfaces, November 19–24, 2006, Smolenice Castle, Slovakia  相似文献   

12.
G. Anoop  K. Minikrishna 《哲学杂志》2013,93(14):1777-1787
Thin films of Eu-doped Y2O3 were deposited using the pulsed laser ablation technique on amorphous fused silica substrates. The effect of oxygen partial pressure (pO2) and substrate temperature on the structural and optical characteristics of the deposited films were investigated. All the deposited films were crystalline, showing preferred orientation along the (111) plane, irrespective of oxygen partial pressure and substrate temperature. The film deposited at 0.005?mbar pO2 exhibited better crystallinity with minimum FWHM at a substrate temperature of 600°C. All the films deposited at various substrate temperatures and different partial pressure (at 600°C) exhibited a red luminescence peak at 615?nm corresponding to the 5D07F1 transition in Eu3+. Photoluminescence excitation spectra exhibited two bands, one corresponding to band to band excitation (212?nm) of the host and the other to charge transfer band excitation (245?nm). A microstructure analysis revealed that surface roughness of the as-deposited films increases with increase in oxygen partial pressure.  相似文献   

13.
脉冲激光制膜过程中等离子体演化规律的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
利用有限差分法对脉冲激光沉积(PLD)技术制备KTa065Nb035O3(KTN)薄膜过程中等离子体在等温和绝热两个阶段的速度演化进行了模拟,并给出了其中主要粒子在空间的具体演化规律,对等离子体在空间膨胀的物理机制,进行了深入的讨论,给出了相应演化过程的物理图像,并揭示了等离子体羽辉在膨胀过程中呈现椭球外形的内在原因.  相似文献   

14.
采用脉冲激光沉积技术制备了钴纳米薄膜,分析和讨论了不同背景气压和脉冲频率对钴纳米薄膜表面形貌的影响及纳米微粒的形成机理。实验结果表明:在低背景气压下,等离子体羽辉自身粒子之间的碰撞占主导作用,容易形成液滴;在较高背景气压下,等离子体羽辉边缘粒子和背景气体粒子之间的碰撞占主导作用,容易形成小岛并凝聚成微颗粒;在4Hz的脉冲重复频率和5Pa背景气压下生长出单分散性良好的钴纳米颗粒。  相似文献   

15.
Nanostructured thin films were deposited by excimer laser ablation of silver targets in controlled atmospheres of He and Ar. The film structural properties were investigated by means of scanning electron microscope and transmission electron microscope imaging. The film growth mechanism was identified as the result of coalescence of nanometric clusters formed during plume flight. Cluster formation involves plume confinement as a consequence of the increased collisional rate among plasma species. Fast photography imaging of the laser-generated silver plasma allowed to identify plasma confinement, shock wave formation and plasma stopping.  相似文献   

16.
ZrO2 thin films were deposited at various oxygen partial pressures (2.0 × 10−5-3.5 × 10−1 mbar) at 973 K on (1 0 0) silicon and quartz substrates by pulsed laser deposition. The influence of oxygen partial pressure on structure, surface morphology and optical properties of the films were investigated. X-ray diffraction results indicated that the films are polycrystalline containing both monoclinic and tetragonal phases. The films prepared in the oxygen partial pressures range 2.0 × 10−5-3.5 × 10−1 mbar contain nanocrystals of sizes in the range 54-31 nm for tetragonal phase. The peak intensity of the tetragonal phase decreases with the increase of oxygen partial pressures. Surface morphology of the films examined by AFM shows the formation of nanostructures. The RMS surface roughness of the film prepared at 2.0 × 10−5 mbar is 1.3 nm while it is 3.2 nm at 3.5 × 10−1 mbar. The optical properties of the films were investigated using UV-visible spectroscopy technique in the wavelength range of 200-800 nm. The refractive index is found to decrease from 2.26 to 1.87 as the oxygen partial pressure increases from 2.0 × 10−5 to 3.5 × 10−1 mbar. The optical studies show two different absorption edges corresponding to monoclinic and tetragonal phases.  相似文献   

17.
In this work we report on pulsed laser deposition (PLD) of chalcogenide thin films from the systems (AsSe)100−xAgIx and (AsSe)100−xAgx for sensing applications. A KrF* excimer laser (λ = 248 nm; τFWHM = 25 ns) was used to ablate the targets that had been prepared from the synthesised chalcogenide materials. The films were deposited in either vacuum (4 × 10−4 Pa) or argon (5 Pa) on silicon and glass substrates kept at room temperature. The basic properties of the films, including their morphology, topography, structure, and composition were characterised by complementary techniques. Investigations by X-ray diffraction (XRD) confirmed the amorphous nature of the films, as no strong diffraction reflections were found. The film composition was studied by energy dispersive X-ray (EDX) spectroscopy. The morphology of the films investigated by scanning electron microscopy (SEM), revealed a particulate-covered homogeneous surface, typical of PLD. Topographical analyses by atomic force microscopy (AFM) showed that the particulate size was slightly larger in Ar than in vacuum. The uniform surface areas were rather smooth, with root mean square (rms) roughness increasing up to several nanometers with the AgI or Ag doping. Based upon the results from the comprehensive investigation of the basic properties of the chalcogenide films prepared by PLD and their dependence on the process parameters, samples with appropriate sorption properties can be selected for possible applications in cantilever gas sensors.  相似文献   

18.
Metal thin film ablation with femtosecond pulsed laser   总被引:2,自引:0,他引:2  
Micromachining thin metal films coated on glass are widely used to repair semiconductor masks and to fabricate optoelectrical and MEMS devices. The interaction of lasers and materials must be understood in order to achieve efficient micromachining. This work investigates the morphology of thin metal films after machining with femtosecond laser ablation using about 1 μm diameter laser beam. The effect of the film thickness on the results is analyzed by comparing experimental images with data obtained using a two-temperature heat transfer model. The experiment was conducted using a high numerical aperture objective lens and a temporal pulse width of 220 fs on 200- and 500-nm-thick chromium films. The resulting surface morphology after machining was due to the thermal incubation effect, low thermal diffusivity of the glass substrate, and thermodynamic flow of the metal induced by volumetric evaporation. A Fraunhofer diffraction pattern was found in the 500-nm-thick film, and a ripple parallel to the direction of the laser light was observed after a few multiple laser shots. These results are useful for applications requiring micro- or nano-sized machining.  相似文献   

19.
《Current Applied Physics》2019,19(12):1338-1342
CeCoIn5 (Co115) thin films have been grown on Al2O3 (000l) substrates through the pulsed laser deposition (PLD). The films are grown mainly along the c-axis, with CeIn3 and In-related alloys. The rock-salt type grains are nucleated, where Co115 grains mixed with excess indium are evenly distributed over the substrate. The electrical resistivity of the films shows a Kondo coherence peak near 47 K and the zero-resistance superconducting state at 1.8 K, which is the first observation in the PLD grown thin films of Co115. The Rietveld refinement of the thin films shows that the c/a ratio (tetragonality) is suppressed to 1.6312 from 1.6374 of single crystals, which is consistent with the linear relationship between the superconducting transition temperature and tetragonality. The good agreement indicates that the PLD could provide an alternative route to tune the 2D character of the critical spin fluctuations to understand the superconducting pairing mechanism of Co115.  相似文献   

20.
何敏华  张端明 《物理》2012,41(3):141-150
脉冲激光沉积技术是现代常用的先进薄膜材料制备技术之一.文章在简要介绍脉冲激光沉积技术及其进展的基础上,较全面地介绍了脉冲激光沉积动力学的基本物理图像和动力学构架,深入地探讨了激光烧蚀靶材过程、等离子体膨胀过程和薄膜沉积过程的动力学规律,阐述了我国学者在脉冲激光沉积动力学研究方面的贡献,例如包括脉冲激光沉积三个工艺过程自洽的统一模型,等离子体膨胀的冲击波模型,基于局域能量动量守恒定律的新等离子体演化动力学模型,包括热源项、蒸发项、等离子体屏蔽效应和动态物性参数的烧蚀热传导模型,考虑电子碰撞效应和能带结构变化的修正双温模型,能统一描写从纳秒级到飞秒级脉冲激光烧蚀规律的统一双温模型等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号