首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum state-to-state dynamics of the N(4S) + H-2(X1+Σ) → NH(X3Σ) + H(2S) reaction is reported in an accurate novel potential energy surface constructed by Zhai et al.(2011 J. Chem. Phys. 135 104314). The time-dependent wave packet method, which is implemented on graphics processing units, is used to calculate the differential cross sections. The influences of the collision energy on the product state-resolved integral cross sections and total differential cross sections are calculated and discussed. It is found that the products NH are predominated by the backward scattering due to the small impact parameter collisions, with only minor components being forward and sideways scattered, and have an inverted rotational distribution and no inversion in vibrational distributions; both rebound and stripping mechanisms exist in the case of high collision energies.  相似文献   

2.
State-to-state time-dependent quantum dynamics calculations are carried out to study F(~2P) + HO(~2Π) → O(~3P) +HF(~1Σ~+) reaction on 1~3A〞 ground potential energy surface(PES). The vibrationally resolved reaction probabilities and the total integral cross section agree well with the previous results. Due to the heavy–light–heavy(HLH) system and the large exoergicity, the obvious vibrational inversion is found in a state-resolved integral cross section. The total differential cross section is found to be forward–backward scattering biased with strong oscillations at energy lower than a threshold of 0.10 eV, which is the indication of the indirect complex-forming mechanism. When the collision energy increases to greater than 0.10 eV, the angular distribution of the product becomes a strong forward scattering, and almost all the products are distributed at θ_t = 0°. This forward-peaked distribution can be attributed to the larger J partial waves and the property of the F atom itself, which make this reaction a direct abstraction process. The state-resolved differential cross sections are basically forward-backward symmetric for v' = 0, 1, and 2 at a collision energy of 0.07 eV; for a collision energy of 0.30 eV,it changes from backward/sideward scattering to forward peaked as v increasing from 0 to 3. These results indicate that the contribution of differential cross sections with more highly vibrational excited states to the total differential cross sections is principal, which further verifies the vibrational inversion in the products.  相似文献   

3.
Vector correlations of the reaction N(2D)+ H2(X1Σ+g) → NH(a1?)+ H(2S) are studied based on a recent DMBESEC PES for the first excited state of NH2[J. Phys. Chem. A 114 9644(2010)] by using a quasi-classical trajectory method.The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0–5 and j = 0 states in a wide collision energy range(10–50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly,the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H–H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(φr), and P(θr, φr).  相似文献   

4.
The quasi-classical trajectory(QCT) is calculated to study the stereodynamics properties of the title reaction H(2S)+NH(X3∑-) →N(4S)+H2 on the ground state 4A' potential energy surface(PES) constructed by Zhai and Han [2011 J.Chem.Phys.135 104314].The calculated QCT reaction probabilities and cross sections are in good agreement with the previous theoretical results.The effects of the collision energy on the k-k' distribution and the product polarization of H2 are studied in detail.It is found that the scattering direction of the product is strongly dependent on the collision energy.With the increase in the collision energy,the scattering directions of the products change from backward scattering to forward scattering.The distribution of P(θr) is strongly dependent on the collision energy below the lower collision energy(about 11.53 kcal/mol).In addition,the P(φr) distribution dramatically changes as the collision energy increases.The calculated QCT results indicate that the collision energy plays an important role in determining the stereodynamics of the title reaction.  相似文献   

5.
To investigate the effect of a reagent’s rotational and vibrational excitations on the stereo-dynamics of the reaction product, the title reaction is theoretically simulated using the quasi-classical trajectory (QCT) method on the 3 A and 3 A potential energy surfaces (PESs). The reaction cross section is considered as the only scalar property in this work at four different collision energies. Furthermore the vector properties including two polarization-dependent differential cross sections (PDDCSs), the angular distributions of product’ rotational momentum are discussed at one fixed collision energy. Effects of reagents’ rotational excitation on the reaction do exist regularly.  相似文献   

6.
Quasi-classical trajectory(QCT) calculations are reported for the H+LiH(v = 0–2, j = 0)→Li+H_2 reaction on a new ground electronic state global potential energy surface(PES) of the LiH_2 system. Reaction probability and integral cross sections(ICSs) are calculated for collision energies in the range of 0 eV–0.5 eV. Reasonable agreement is found in the comparison between present results and previous available theoretical results. We carried out statistical analyses with all the trajectories and found two main distinct reaction mechanisms in the collision process, in which the stripping mechanism(i.e., without roaming process) is dominated over the collision energy range. The polarization dependent differential cross sections(PDDCSs) indicate that forward scattering dominates the reaction due to the dominated mechanism. Furthermore,the reactant vibration leads to a reduction of the reactivity because of the barrierless and attractive features of PES and mass combination of the system.  相似文献   

7.
The best optimal initial reactant state and collision energy for observing the stereodynamical vector properties of the title reaction in the ground electronic state X2A potential energy surface(PES) [Zanchet et al. 2006 J. Phys. Chem. A 110 12017] are theoretically predicted using the quasi-classical trajectory(QCT) method for the first time. The calculated results reveal that the smallest value of the rotational quantum number j, larger vibrational quantum number v, and the lower strength of collision energy should be selected for offering the most obvious picture about the stereodynamical vector properties. Polarization-dependent differential cross sections and the angular momentum alignment distribution, P(θr) and P(Φr) in the center-of-mass frame, are obtained to gain an insight into the alignment and orientation of the product molecules. The rotational angular momentum vector j of CO is aligned to be perpendicular to reagent relative velocity k. The product polarizations align along the y axis, pointing to the positive direction of the y axis. A new method is developed to investigate massive reactions with various initial states and to further study the vector properties of the fundamental reactions in detail.  相似文献   

8.
The quantum state-to-state calculations of the D + ND→N + D_2 reaction are performed on a potential energy surface of 4 A' state. The state-resolved integral and differential cross sections and product state distributions are calculated and discussed. It is found that the rotational distribution, rather than the vibrational distribution, of the product has an obvious inversion. Due to the fact that it is a small-impact-parameter collision, its product D_2 is mainly dominated by rebound mechanism, which can lead to backward scattering at low collision energy. As the collision energy increases, the forward scattering and sideward scattering begin to appear. In addition, the backward collision is also found to happen at high collision energy, through which we can know that both the rebound mechanism and stripping mechanism exist at high collision energy.  相似文献   

9.
李永庆  杨云帆  于洋  张永嘉  马凤才 《中国物理 B》2016,25(2):23401-023401
Quasi-classical trajectory calculations are performed to study the stereodynamics of the H(~2S) + NH(a~1?) →H_2(X~1Σ_g~+) + N(~2D) reaction based on the first excited state NH_2(1~2A') potential energy surface reported by Li et al.[Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644] for the first time. We observe the changes of differential cross-sections at different collision energies and different initial reagent rotational excitations. The influence of collision energy on the k–k' distribution can be attributed to a purely impulsive effect. Initial reagent rotational excitation transforms the reaction mechanism from insertion to abstraction. The effect of initial reagent rotational excitations on k–k' distribution can be explained by the rotational excitation enlarging the rotational rate of reagent NH in the entrance channel to reduce the probability of collision between incidence H atom and H atom of target molecular. We also investigate the changes of vector correlations and find that the rotational angular momentum vector j' of the product H_2 is not only aligned, but also oriented along the y axis. The alignment parameter, the disposal of total angular momentum and the reaction mechanism are all analyzed carefully to explain the polarization behavior of the product rotational angular moment.  相似文献   

10.
Using the quasi-classical trajectory method, the product rotational polarization of the ion-molecule reaction He^+D2^+ has been calculated at different collision energies on the PALMIERI potential energy surface [Palmieri et al. Mol. Phys. 98 (2000) 1835]. The distribution angle between k and j′, P(Or), the distribution of the dihedral angle P(Фr), and the angular distribution of product rotational vectors in the form of polar plots in θr and Фr are calculated. In addition, four polarization-dependent differential cross sections are also presented in the center-of-mass frame, respectively. The results indicate that the rotational polarization of the product HeD^+ presents different characters for different collision energies. These discrepancies may be ascribed to the different collision energies and constructions of the potential energy surface.  相似文献   

11.
A quasi-classical trajectory(QCT) calculation is used to investigate the vector and scalar properties of the D + Br O → DBr + O reaction based on an ab initio potential energy surface(X1A state) with collision energy ranging from 0.1 kcal/mol to 6 kcal/mol. The reaction probability, the cross section, and the rate constant are studied. The probability and the cross section show decreasing behaviors as the collision energy increases. The distribution of the rate constant indicates that the reaction favorably occurs in a relatively low-temperature region(T 100 K). Meanwhile, three product angular distributions P(θr), P(φr), and P(θr, φr) are presented, which reflect the positive effect on the rotational angular momentum j' polarization of the DBr product molecule. In addition, two of the polarization-dependent generalized differential cross sections(PDDCSs), PDDCS00 and PDDCS20, are computed as well. Our results demonstrate that both vector and scalar properties have strong energy dependence.  相似文献   

12.
Quasi-classical trajectory theory is used to study the reaction of O(3 P) with H 2 (D 2) based on the ground 3 A″ potential energy surface (PES).The reaction cross section of the reaction O+H 2 →OH+H is in excellent agreement with the previous result.Vector correlations,product rotational alignment parameters P 2 (j · k) and several polarizeddependent differential cross sections are further calculated for the reaction.The product polarization distribution exhibits different characteristics that can be ascribed to different motion paths on the PES,arising from various collision energies or mass factors.  相似文献   

13.
Quasi-classical trajectory theory is used to study the reaction of O(3p) with H2 (D2) based on the ground 3A″ potential energy surface (PES). The reaction cross section of the reaction O+H2→+OH+H is in excellent agreement with the previous result. Vector correlations, product rotational alignment parameters (P2(j′. k)) and several polarizeddependent differential cross sections are further calculated for the reaction. The product polarization distribution exhibits different characteristics that can be ascribed to different motion paths on the PES, arising from various collision energies or mass factors.  相似文献   

14.
<正>The quasi-classical trajectory(QCT) method is used to calculate the stereo-dynamics of the exchange reaction H_a+LiH_b→LiH_a+H_b and its isotopic variants based on an accurate potential energy surface reported by Prudente et al.[Prudente F V,Marques J M C and Maniero A M 2009 Chem.Phys.Lett.474 18].The reactive probability of the title reaction is computed.The vector correlations and four polarization-dependent generalized differential cross sections(PDDCSs) at different collision energies are presented.The influences of the collision energy and the reagent rotation on the product polarization are studied in the present work.The results indicate that the product rotational angular momentum j’ is not only aligned,but also oriented along the direction perpendicular to the scattering plane. The product polarization distributions of the title reaction and its isotopic variants exhibit distinct differences which may arise from different mass combinations.  相似文献   

15.
In this paper, the stereodynamics of Li + DF → Li F + D reaction is investigated by the quasi-classical trajectory(QCT)method on the ^2A' potential energy surface(PES) at a relatively low collision energy of 8.76 kcal/mol. The scalar properties of the title reaction such as reaction probability and cross section are studied with vibrational quantum number of v = 1–6. The product angular distributions P(θr) and P(φr) are presented in the same vibrational level range. Moreover, two polarization-dependent generalized differential cross sections(PDDCSs), i.e., the PDDCS00 and PDDCS22+are calculated as well. These stereodynamical results demonstrate sensitive behaviors to the vibrational quantum numbers.  相似文献   

16.
The quasi-classical trajectory(QCT) method is employed to calculate the stereodynamics of the abstraction reactions H/D+HS/DS based on an accurate potential energy surface [L S J,Zhang P Y,Han K L and He G Z 2012 J.Chem.Phys.136 094308].The reaction cross sections of the title reaction are computed,and the vector correlations for different collision energies and different initial vibrational states are presented.The influences of the collision energy and reagent vibration on the product polarization are studied,and the product polarizations of the title reactions are found to be distinctly different,which arises from the different mass factors,collision energies,and reagent vibrational states.  相似文献   

17.
<正>The quasi-classical trajectory(QCT) method is used to study the H+HS reaction on a newly built potential energy surface(PES) of the triplet state of H2S(3A″) in a collision energy range of 0-60 kcal/mol.Both scalar properties, such as the reaction probability and the integral cross section(ICS),and the vector properties,such as the angular distribution between the relative velocity vector of the reactant and that of the product,etc.,are investigated using the QCT method.It is found that the ICSs obtained by the QCT method and the quantum mechanical(QM) method accord well with each other.In addition,the distribution for the product vibrational states is cold,while that for the product rotational states is hot for both reaction channels in the whole energy range studied here.  相似文献   

18.
魏强 《中国物理 B》2014,23(2):23401-023401
The stereodynamics and reaction mechanism of the H′(^2S) + NH (X^3∑^-) → N(^4S) + H2 reaction are thoroughly studied at collision energies in the 0.1 eV-1.0 eV range using the quasiclassical trajectory (QCT) on the ground 4A″ potential energy surface (PES). The distributions of vector correlations between products and reagents P(φr), P(φr) and P(φr,φr) are presented and discussed. The results indicate that product rotational angular momentum j′ is not only aligned, but also oriented along the direction perpendicular to the scattering plane; further, the product H2 presents different rotational polarization behaviors for different collision energies. Furthermore, four polarization-dependent differential cross sections (PDDCSs) of the product He are also calculated at different collision energies. The reaction mechanism is analyzed based on the stereodynamics properties. It is found that the abstraction mechanism is appropriate for the title reaction.  相似文献   

19.
The main purpose of the present work is to discuss whether or not the collective flows in heavy-ion collision at the Fermi energy can be taken as a tool to investigate the cluster configuration in light nuclei. In practice, within an extended quantum molecular dynamics model, four α-clustering(linear chain, kite, square and tetrahedron)configurations of 160 are employed in the initialization, ~(16)O+~(16)O around the Fermi energy(40-60 MeV/nucleon)with impact parameter 1-3 fm are simulated, and the directed and elliptic flows are analyzed. It is found that collective flows are influenced by the different α-clustering configurations, and the directed flow of free protons is more sensitive to the initial cluster configuration than the elliptic flow. Nuclear reaction at the Fermi energy can be taken as a useful way to study cluster configuration in light nuclei.  相似文献   

20.
The stereodynamic properties of the reaction C(3P)+NO(X2Π)→CN(X2Σ+)+O(3P) in different rotational states of reactant NO are studied theoretically by using the quasiclassical trajectory method on 2A' and 2A' potential energy surfaces(PESs) at a collision energy of 0.06 eV.The vector properties in different rotational states on the two surfaces are discussed in detail.The results indicate that the rotational excitation of NO has considerable influence on the stereodynamic property of the reaction occurring on the two surfaces.At the same time,the calculated polarization-dependent differential cross sections(PDDCSs) in different initial rotational states manifest that products are strongly polarized at three scattering angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号