首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在双轴、单轴旋转调制激光陀螺航海惯导备份配置中,主惯导双轴旋转调制航海惯导故障情况下,针对备份系统单轴旋转调制航海惯导定位精度受方位陀螺常值漂移影响的问题,提出了双航海惯导定位信息融合方法。在格网系下设计了两套系统的联合误差状态Kalman滤波器,以系统间位置参数的差异为观测量,对惯性器件的确定性误差进行估计;建立了定位误差预测模型,对单轴旋转调制航海惯导的确定性定位误差进行预测补偿;通过滤波器、预测模型在地理系与格网系间的相互转换,实现了定位信息融合算法的全球适应性。最后通过仿真、实际系统实验进行了验证,结果表明:对单轴旋转调制航海惯导的定位误差预测补偿后,与补偿前相比其定位误差减小了30%,进而保证了主惯导双轴旋转调制航海惯导发生故障情况下系统的定位精度。  相似文献   

2.
针对惯性/天文组合导航系统中大的初始状态误差影响惯导误差收敛速度的问题,在星相机观测具有先验位置信息的有限空间目标的辅助下,提出一种基于目标-恒星角距异步测量的惯导误差在线快速确定方法。首先,在星相机光轴旋转角度和视场角大小受限的情况下,设计了通过异步照相观测方式获取有效空间目标参考信息的方案;其次,在利用惯导误差状态传播模型实现异步测量信息同步处理的基础上,构建基于空间目标与恒星之间角距的非线性最小二乘优化模型,避免了星相机的光轴扰动和安装误差对测量精度的影响;最后,基于高斯牛顿法设计了两轮迭代优化估计惯导位置误差和速度误差的方法。蒙特卡洛仿真结果表明,所提方法利用对空间目标和恒星的有限观测信息,可以有效估计惯导位置误差和速度误差,在初始位置误差约十千米量级的情况下,可以估计补偿约97.73%的位置误差以及66.25%的速度误差,优化求解误差参数的计算耗时为0.0160 s。  相似文献   

3.
系统级双轴旋转调制捷联惯导误差分析及标校   总被引:7,自引:3,他引:4  
旋转调制技术可以调制惯性器件常值误差,有效提高惯导系统的长航时导航精度。出于一种旋转调制式捷联惯导系统的研制需求,从旋转调制式捷联惯导的基本原理出发,提出了一种系统级双轴旋转调制式捷联惯导工程实现方案,并对其系统误差特性进行了深入的分析及仿真,找出了影响系统长航时导航精度的误差源。基于此。为了能仅利用系统自身旋转机构就可对主要误差源进行估计补偿,提出了一种系统级自标校方案。通过计算机仿真表明:此方案可以对影响系统长航时精度的主要误差项进行精确估计,是一种有效可行的系统级标校方案。  相似文献   

4.
激光陀螺惯性导航系统在旋转调制过程中会产生锯齿形速度误差,影响舰载武器系统子惯导传递对准精度。通过分析锯齿形误差产生的机理,提出了一种基于不同旋转控制策略的双惯导数据融合方法,估计并补偿主惯导惯性元件误差,从而减小主惯导锯齿形速度误差波动幅度。仿真结果表明,补偿后主惯导速度锯齿形速度误差峰峰值减小了一个数量级,子惯导传递对准后的水平角精度提高了1.5″,方位角精度提高了3′。  相似文献   

5.
单轴/双轴旋转调制航海惯导备份配置满足了舰艇对于定位精度、可靠性、成本的综合要求,但系统间缺少信息融合。针对此问题,以单轴旋转惯导的姿态误差、速度误差、位置误差与双轴旋转惯导对应误差的差值以及两套惯导的陀螺常值漂移、水平加速度计常值零偏为系统状态,并以二者间扣除杆臂效应后的速度及位置的差值为观测量,通过联合旋转调制,改变两套系统IMU的相对姿态关系。分段常值可观测性分析表明,所有系统状态完全可观。建立了定位误差预测方程,对单轴旋转惯导方位陀螺漂移造成的定位误差进行预测补偿。实验结果表明,对单轴旋转惯导方位陀螺漂移造成的定位误差预测补偿后,其定位误差减小了30%,不仅满足了高可靠性的要求,而且提高了故障情况下的导航精度。  相似文献   

6.
为提高车辆导航系统的精确度和可靠性,提出一种车辆动力学模型辅助惯性导航系统的方法。建立车辆非线性动力学模型,利用四阶龙格库塔法实时解算速度信息。以惯导误差方程为状态方程,动力学模型与惯性导航解算的速度差为观测量,设计了容积卡尔曼滤波器,并用估计的状态误差对惯导进行校正。仿真结果表明,所提出的利用车辆动力学模型辅助惯导的方法能有效抑制惯导误差的发散,位置精度和速度精度比纯惯导系统提高了一个数量级,航向角精度提高了73%。  相似文献   

7.
为了有针对性的消除激光陀螺速率偏频惯导系统的可补偿寻北误差,进一步提高航向精度,从速率偏频斜装惯性仪表的数学模型出发,对陀螺和加速度计的各项误差进行了寻北误差分析,基于捷联惯导对准误差公式给出了惯性仪表各误差源的影响量级。明确了引起倾斜状态航向敏感误差的主要因素,提出了以调整激光陀螺旋转轴方向陀螺零偏抵消激光陀螺标度因数不对称性误差或者速率偏频状态陀螺零位偏移的航向敏感误差补偿措施。经转台试验验证,该措施简单可靠,有效消除了倾斜状态航向敏感误差,速率偏频系统的全方位寻北精度能够从86'(3σ)提高到优于40'(3σ)。  相似文献   

8.
舰船对惯导系统的姿态精度要求较高,其中转轴倾角是影响双轴旋转调制惯导系统姿态精度的主要因素之一。目前标定转轴倾角的方法多为在实验室内静态标定,船舶系泊状态下在线标定方法是必需要解决的实际应用问题。针对系泊状态下转轴倾角的在线标定问题,首先推导了转轴倾角对姿态波动影响的数学模型,然后在有参考系统提供准确姿态的条件下,以待补偿系统与参考系统的姿态差作为观测量,建立了转轴倾角标定的状态方程和量测方程,同时应用FIR低通滤波器消除系泊状态下时间同步误差的影响。半实物仿真实验结果表明,系泊状态下转轴倾角标定精度与静态下相当,所提出的方法可以提高双轴旋转惯导系统的可维护性。  相似文献   

9.
针对长航时舰船航行过程中电磁计程仪误差变化较大,同时存在未知测量噪声,无法满足船用捷联惯导/电磁计程仪组合导航系统对计程仪要求的问题,提出了一种用于非线性非高斯系统状态估计的滤波方法。以无迹卡尔曼滤波为组合导航系统基本算法,测量噪声密度分布中引入高斯混合模型,提出了捷联惯导/电磁计程仪组合导航的高斯混合模型无迹卡尔曼滤波算法,达到实时准确估计并补偿惯性导航系统误差的目的。航行试验验证了基于高斯混合模型组合导航方法的可行性,使得捷联惯导/电磁计程仪组合导航系统的最大定位误差由水平阻尼的1213 m减小到392 m,且比传统无迹卡尔曼滤波方法进一步消除了计程仪误差的影响,定位精度提高了15%。  相似文献   

10.
针对地理纬度未知且包含有角晃动干扰、高低频线运动干扰等复杂环境下,捷联惯导系统难以实现快速、高精度对准的问题,提出了一种纬度未知条件下的抗扰动自对准算法。通过设置滑动窗口,根据惯性坐标系下两个不同时刻的重力加速度矢量的夹角求取纬度信息,该算法充分利用实时的惯性仪表数据实现对纬度的估计。通过将初始对准问题转化为姿态确定的问题消除角晃动干扰的影响,利用惯性坐标系下重力加速度矢量和晃动干扰加速度的频率特点,引入小波阈值消噪和多项式优化的算法抑制线运动干扰的影响,从而提高惯导系统抗扰动自对准精度。仿真和车载半物理实验结果表明,该算法具有纬度自估计、隔离角晃动和线运动干扰的能力。在导航级惯性仪表参数下,可将实时估计的纬度的误差限制在0.1°左右,抗干扰自对准的航向角误差接近惯性器件误差决定的极限精度。  相似文献   

11.
机载武器极区传递对准算法   总被引:4,自引:0,他引:4  
针对高纬度地区经线收敛导致以真北向作为航向参考的导航算法失效的问题,并结合战机在极区内具备正常导航和作战能力的需求,提出了基于格网导航力学编排的极区传递对准算法.首先以格林威治子午线作为航向参考,在此基础上定义了格网导航坐标系同时给出了格网导航力学编排及其误差方程,解决了极区内相对经线定向定位困难的问题.其次在格网导航坐标系下设计了主子惯导信息的“速度+姿态”匹配传递对准算法,估计和校正弹载子惯导的误差.仿真结果表明,该算法可避免载机进行费时的方位机动,仅需一次简单的摇翼机动就可令弹载惯导5 s 内方位对准精度达到5',为战机在极区内仍具有导弹攻击能力提供了工程应用参考.  相似文献   

12.
姿态角匹配传递对准要求匹配信息在时间上统一。主子惯导之间存在传输延迟以及由于启动时间点随机性导致的解算点不匹配,造成信息在时间上不统一。分析了时间延迟对姿态角匹配传递对准的影响,并提出了一种将时间延迟分离并加以补偿处理的方法。采用滞后子惯导信息的方式预先补偿常值时延,而后采用状态增强的方式估计补偿随机启动时间点造成的随机时延,从而达到匹配信息时间统一的要求。试验结果表明,当主子惯导时间不同步,若不对时间延迟补偿,姿态角估计误差较大甚至不收敛;存在100 ms时间延迟时,相比于直接采用状态增强的方式估计补偿时间延迟,采用常值与随机时延分别补偿的方式卡尔曼滤波器收敛时间从28 s缩短至10 s,东向与北向水平估计精度分别提升至0.5'、0.3',航向估计精度相同。  相似文献   

13.
旋转调制光纤陀螺航海惯导系统中,光纤陀螺标度因数误差会与地球自转角速度耦合产生等效的天向和北向陀螺漂移误差,也会与船体摇摆角速度以及惯性测量单元旋转调制角速度耦合产生短时动态误差,限制了长航时航海惯性导航精度。通过使用两套三轴旋转调制光纤陀螺航海惯导系统进行联合旋转调制,提出一种光纤陀螺标度因数误差在线估计与自校正方法。根据两套三轴旋转调制光纤陀螺航海惯导系统的水平旋转轴空间夹角关系建立观测方程,实现在线估计滤波。半实物仿真结果表明,自主导航过程中光纤陀螺标度因数误差在线估计精度优于1 ppm,利用输出校正方式在线补偿光纤陀螺标度因数误差导致的惯导定位误差,有效抑制了两套三轴旋转调制光纤陀螺航海惯导系统定位误差的增长。实际转台模拟实验中,两套三轴旋转调制光纤陀螺惯导系统300 h纯惯性导航整体定位最大误差分别减小25%和40%。算法采用地心地固坐标系,因此也适用于极区导航情况。  相似文献   

14.
单基线GPS动态航向测量与误差分析   总被引:1,自引:0,他引:1  
针对GPS天线安装偏差在动态、实时情况下导致测量设备空间参考基准不一致,进而产生GPS航向测量误差的问题,采用空间投影的方法,分析了船体纵横摇、GPS天线高程差、方位偏差、GPS测量基线长和基座高程差等因素对GPS航向的影响,推导了GPS动态航向测量模型的误差补偿方程。仿真结果表明,方位偏差和船体横摇角分别是舰船静态和动态情况下GPS航向测量误差的主要影响因素。以某型高精度INS导航参数为基准,对GPS实测数据进行评估,试验结果表明,误差补偿后的GPS航向与INS航向的差值在均值统计上相差0.001°,证实了补偿模型提高GPS航向测量精度的有效性。  相似文献   

15.
针对载机未装备主惯导系统的弹载捷联惯导初始对准问题,提出了一种基于机载GPS信息的动基座传递对准算法。首先利用惯性凝固思想设计了基于比力积分和GPS速度信息的惯性系粗对准算法,粗略估计弹载惯导的初始姿态;然后通过分析惯导系统在惯性系下的导航误差方程,设计了基于GPS信息的"速度+位置"匹配卡尔曼滤波精对准算法,对粗对准误差做进一步估计补偿。车载试验结果为:与车载激光捷联惯导输出相比,水平和方位对准精度分别为6’和18’。试验验证了该算法的有效性,为未装备机载主惯导的弹载捷联惯导的快速初始化提供了工程应用参考。  相似文献   

16.
引入系统级旋转自补偿技术可以提高惯性导航系统的精度,该技术是指对整个IMU施加旋转运动从而改变元器件的工作方式,使元件误差得到调制,在进行积分时调制后的误差在一个周期内得到抵消.在捷联式惯导系统中,当载体处于动态时,标度因数误差和安装误差与惯性传感器的输出产生耦合,旋转调制对系统的补偿效果将受到影响.改进的途径一是提高元件标度因数稳定性,减小系统安装误差角;二是隔离载体运动,即减小陀螺仪和加速度计的输出值.本文通过对比分析在静态和动态条件下双轴连续旋转调制式惯导的误差方程,解释了载体运动对旋转调制效果的影响机理,并通过数字仿真验证了载体运动对系统补偿效果的影响.分析和仿真发现,在静态和动态条件下旋转调制都可以提高系统的精度,而在静态条件下或者在通过环架结构隔离了载体运动后旋转调制的效果相对于动态下有较为明显的提高.  相似文献   

17.
单轴旋转惯导系统“航向耦合效应”分析与补偿   总被引:1,自引:0,他引:1  
从单轴旋转惯导系统的误差方程出发,分析载体角运动对系统的影响,从改变IMU旋转角速率的角度补偿系统的"航向耦合效应"。针对绕载体系Z轴正反旋转的单轴旋转系统,载体航向运动与IMU的旋转运动耦合改变了从旋转坐标系到导航坐标系的坐标变换矩阵的形式,从而影响系统误差调制效果,导致系统的"航向耦合效应"。为保证该坐标变换矩阵的周期性,考虑改变IMU的旋转角速率,使之绕导航系而非载体系匀速旋转,隔离载体航向运动与IMU旋转运动的耦合,补偿航向运动对系统的影响。最后,利用海上试验实测的姿态和航向数据进行了单轴旋转惯导系统的误差仿真。结果表明,采取"航向耦合效应"补偿方案时,无姿态运动条件下系统位置误差减小一半;在实际姿态运动条件下,系统误差减小三分之一。  相似文献   

18.
动态初始对准是惯性导航系统(惯导)工程应用的重要功能之一。针对动态环境下随机干扰和弱可观惯性仪表误差导致对准滤波器性能下降的问题,采用未补偿偏置滤波器实现惯导系统的初始对准。给出了带高度阻尼的惯导水平通道误差模型,根据最小二乘估计原理定量分析了陀螺漂移误差对降维滤波器精度的影响,进而推导出带偏置结构的对准误差模型,设计出基于水平位置误差观测的7维未补偿偏置Kalman滤波器。动态试验结果表明,未补偿偏置滤波器能有效提高惯导动态初始对准性能,仅需40 min对准精度即达标,比直接降维滤波器快一倍以上,具有较强的工程应用价值。  相似文献   

19.
针对外场环境下没有准确外界参考信息时惯导系统的标定问题,提出了一种基于双惯导系统协同的全参数在线标定算法,其中惯导1为正常工作的双轴旋转惯导系统,惯导2为待标定的具备双轴转位机构的惯导系统。不依靠外界基准信息,在保证惯导1独立工作的前提下,以两套惯导间的相对速度、相对位置作为状态约束观测,利用卡尔曼滤波对惯导2的全误差参数进行标定。通过蒙特卡洛仿真、实物实验和不同时段的协同标定实验对算法的有效性进行了验证,结果表明:在船载冗余惯导系统协同标定的条件下,所提算法对惯导2陀螺标度因数的标定精度优于0.2 ppm (1σ),加速度计标度因数的标定精度优于0.6 ppm (1σ),安装误差的标定精度优于1.5"(1σ);惯导2的标定精度不受惯导1绝对误差的影响,在运动状态下也能进行自主标定。  相似文献   

20.
针对双轴旋转调制惯导系统在旋转过程中无法直接提供载体角速度等导航信息的问题,提出了一种以标定惯性测量单元与内外框时空关系来精确解调原始旋转惯性测量数据的载体导航信息提取方法。首先,从基于旋转轴的内外框坐标系定义出发,提出了综合考量整圈所有角位置状态的惯性测量单元与内外转轴安装角标定方法。然后,利用转轴方向惯性测量角增量曲线和转位测量角增量曲线的相似平移关系推导了两者之间时间不同步误差的计算方法。进一步,基于滑动数据存储窗口,通过实时测角变化率计算和相邻转位测角外推实现了时间不同步误差的精确补偿。最后,采用基于高次谐波函数的精细化误差模型实现了转轴锥摆运动引起的测角不圆度误差精确标定。采集内外框旋转试验数据验证了所提方法的有效性,结果表明由原始惯性测量信息解调导致的载体航姿提取误差小于0.001°。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号