首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbon nanotubes (CNTs) exhibit both excellent high thermal conductivity and low coefficient of thermal expansion (CTE), which are an ideal reinforcement in composite materials for high performance electronic packaging applications. In the present study, CNT/Cu composites containing CNTs varying from 0 vol.% to 15 vol.% are prepared, and their CTE behavior is studied in detail. The results indicate that the CTE of 0–10 vol.% CNT/Cu composites is significantly decreased with increasing CNT content. However, as the CNT content increases to 15 vol.%, the decrease in CTE of the composites is pronouncedly reduced. Possible mechanisms are discussed in combination with CTE model predictions.  相似文献   

2.
This investigation is an attempt to improve our understanding of the thermal properties of PMMA (Polymethyl methacrylate) by using PS(Polystyrene); the miscibility of PMMA/PS polymer blend is studied. Our work aims to study the impact of the percentage of PMMA/PS polymer blend on the simulated values of the glass transition temperature (Tg) using the dilatometric method. Compass was chosen as the force field (second category force field). The results reveal a single value of the glass transition temperature Tg that is found for all the curves of the PMMA/PS blend system (molar ratio: (50:50, 60:40, 54:46 and 80:20)); this could be a good criterion for predicting the miscibility. Additionally, the solubility parameters of PMMA and PS are calculated and used to obtain the Flory–Huggins parameter, and the morphology of our polymer blend is simulated using the dissipative particle dynamics method (DPD). Our results exhibit an increase in the Tg of PMMA whenever PS is added; hence, we can confirm the miscibility of the PMMA/PS polymer system.  相似文献   

3.
Solid solutions of In_(2(1-x)(HfMg)_xMo_3O_(12) are synthesized by solid state reaction with the aim to reduce the phase transition temperature of In_2Mo_3O_(12) and improve its thermal expansion property.The effects of(HfMg)~(6+) incorporation on the phase transition and thermal expansion are investigated.It is shown that the monoclinic-to-orthorhombic phase transition temperature obviously decreases and the coefficient of thermal expansion(CTE) of the orthorhombic becomes less negative and approaches to zero with increasing the content of(HfMg)~(6+).A near zero thermal expansion covering the case at room temperature(RT) is achieved for the solid solutions with x ≥ 0.85,implying potential applications of this material in many fields.  相似文献   

4.
Edge-cladding is a key factor in improving saturated small signal gain coefficient βs of large laser disc glass. In this paper, the glasses were melted with traditional method. The influences of mixed alkali effect (MAE) on refractive index, thermal expansion coefficient α, glass transition temperature Tg, dilatometer softening temperature Td, and relative chemical durability of phosphate edge-cladding glasses were studied.The results reveal that when Li/(Na + Li) = 0.5, Tg, Td, and dissolution rate (DR) reach a minimal value.These results are preferred in phosphate edge-cladding glasses.  相似文献   

5.
Multi-scale hybrid composite laminates of epoxy/carbon fiber (CF) reinforced with multi-walled carbon nanotubes (MWCNTs) were fabricated in an autoclave. For laminate fabrication, 0.5 wt% of pristine MWCNTs or silane-functionalized MWNCTs (f-MWCNTs) were dispersed into a diglycidyl ether of bisphenol-A epoxy system and applied on the woven carbon fabric. The neat epoxy/CF composite and the MWCNTs-reinforced epoxy/CF hybrid composites were characterized by thermogravimetric analysis (TGA), thermomechanical analysis (TMA), tensile testing, and field emission scanning electron microscopy (FE-SEM). A significant improvement in initial decomposition temperature and glass transition temperature of epoxy/CF composite was observed when reinforced with 0.5 wt% of f-MWCNTs. The coefficient of thermal expansion (CTE), measured by TMA, diminished by 22% compared to the epoxy/CF composite, indicating an improvement in dimensional stability of the hybrid composite. No significant improvement in tensile properties of either MWCNTs/epoxy/CF composites was observed compared to those of the neat epoxy/CF composite.  相似文献   

6.
Length-temperature measurements from ?180°C to the glass transition temperature have been made on a poly(vinyl alkyl ether) series, poly(ethylene terephthalate), and a tetrafluoroethylene-trifluoropropylene copolymer series.

Consistent with low frequency dynamic measurements, the poly(vinyl alkyl ethers) exhibit a glass-glass transition? Tgg [1] between Tg and Tg ?70°C with evidence of another at about ?160 to ?180°C. With increasing side-chain length, the expansion coefficient below Tg- and the magnitude of the g-g transition increase, and the value of the Simha-Boyer free-volume product decreases, suggesting retention of excess free volume by the flexible pendant group. This behavior is analogous to that observed for poly(alkyl methacrylates) except that the latter system exhibited two g-g transitions, the lower of which coincided with Tgg [1] observed here.

Poly(ethylene terephthalate) samples, both amorphous and crystalline, exhibit two T > Tg transitions at about ?85 and ?40°C. Dynamic results resolve only one relaxation in this temperature range.

The glass temperatures of the tetrafluoroethylene-trifluoropropylene copolymer series, as determined by both dilatometry and differential scanning calorimetry, extrapolate to a Tg, for 100% amorphous PTFE of 11-16°C. Two g-g transitions, present in each homo-polymer, persist in the copolymers, indicating that only a small number of molecular units are involved. The magnitude of these relaxations, however, as measured by the change in expansion coefficient, is dependent on copolymer composition.  相似文献   

7.
The equilibrium lattice parameter, heat capacity, thermal expansion coefficient and bulk modulus of Ni 2 MnGa Heusler alloy are successfully obtained using the first-principles plane-wave pseudopotential (PW-PP) method as well as the quasi-harmonic Debye model. We analyse the relationship between bulk modulus B and temperature T up to 800 K and obtain the relationship between bulk modulus B and pressure at different temperatures. It is found that the bulk modulus B increases monotonically with increasing pressure and decreases with increasing temperature. The pressure dependence of heat capacity C v and thermal expansion α at various temperatures are also analysed. Finally, the Debye temperature of Ni 2 MnGa is determined from the non-equilibrium Gibbs function. Our calculated results are in excellent agreement with the experimental data.  相似文献   

8.
以ZrO2固体电解质材料为例,研究氧传感器电解质材料原子振动特点和热膨胀系数及其热稳定性随温度和时间的变化规律,探讨原子非简谐振动的影响。结果表明:原子振动的频率、阻尼系数,在简谐近似下为常数,在考虑到非简谐效应后随温度升高而增大;原子平均位移和热膨胀系数在简谐近似下为零,在考虑到非简谐效应后随温度升高而增大,随的时间的增长而减小;热膨胀性能稳定性温度系数随温度的升高而减小,随时间的增长而增大,即使用时间越长,材料的热膨胀性能稳定性越低;温度越高,热膨胀性能越稳定;非简谐情况下的原子振动的频率、阻尼系数和热膨胀系数与简谐近似下的差值随温度的升高而增大,即温度越高,非简谐效应越显著。  相似文献   

9.
The structural, elastic, and thermodynamic properties of cubic-Fe 2 TiAl under high temperatures and pressures are investigated by performing ab initio calculation and using the quasi-harmonic Debye model. Some ground state properties such as lattice constant, bulk modulus, pressure derivative of the bulk modulus, and elastic constants are in good agreement with the available experimental results and theoretical data. The thermodynamic properties of Fe 2 TiAl such as thermal expansion coefficient, Debye temperature, and heat capacity in ranges of 0 K-1200 K and 0 GPa-250 GPa are also obtained. The calculation results indicate that the heat capacities at different pressures all increase with temperature increasing and are close to the Dulong-Petit limit at higher temperatures, Debye temperature decreases with temperature increasing, and increases with pressure rising. The cubic-Fe 2 TiAl is stable mechanically under 250 GPa. Moreover, under lower pressure, thermal expansion coefficient rises rapidly with temperature increasing, and the increasing rate becomes slow at higher pressure.  相似文献   

10.
A series of Ni and Ge co-doped manganese nitride materials were fabricated by mechanical ball milling followed by solid-state sintering. Their thermal expansion properties and electrical and thermal conductivities were investigated in the temperature range of 77–300 K. The results show that Ni and Ge co-doped manganese nitride materials have negative thermal expansion (NTE), and the operation-temperature window of NTE shifts toward the lower temperature region and the variation of linear thermal expansion (ΔL/L (300K)) in the operation-temperature window of NTE decreases with increasing Ni content. The combination of these two factors results in a low coefficient of thermal expansion (CTE) at cryogenic temperatures. The average CTE of Mn3(Cu0.2Ni0.4Ge0.4)N drops to ‘zero’ in the temperature range of 190–77 K. The values of electrical and thermal conductivities of the Ni and Ge co-doped manganese nitride materials are in the ranges of 2–3×103 (ohm cm)−1 and 1.6–3.4 W (m K)−1, respectively.  相似文献   

11.
Najm Ul Aarifeen  A Afaq 《中国物理 B》2017,26(12):123103-123103
Thermodynamic properties of Cd0.25Zn0.75Se alloy are studied using quasi harmonic model for pressure range of 0 GPa-10 GPa and temperature range 0 K-1000 K. The structural optimization is obtained by self-consistent field calculations and full-potential linearized muffin-tin orbital method with GGA+U as an exchange correlation functional where U=2.3427 eV is Hubbard potential. The effects of temperature and pressure on bulk modulus, Helmholtz free energy, internal energy, entropy, Debye temperature, Grüneisen parameter, thermal expansion coefficient, and heat capacities of the material are observed and discussed. The bulk modulus, Helmholtz free energy, and Debye temperature are found to be decreased on increasing temperature while there is an increasing behavior with rise of the pressure. Whereas the internal energy has increasing trend with the rise in temperature and it almost remains insensitive to pressure. The entropy of the system increases (decreases) with rise of pressure (temperature).  相似文献   

12.
王丽莉  万明杰  马江将  蒋刚 《物理学报》2014,63(8):83103-083103
基于部分离子势函数的分子动力学方法,研究了U_(1-x)Pu_xO_2(x=0.07,0.15,0.25和0.5)在300—3000 K温度范围和0—1.5 GPa下的热力学性质,研究发现,在等压和不同温度下,随着钚(Pu)比率的增加,U_(1-x)Pu_xO_2的晶格常数线性减小,线性膨胀系数有所增大,等温压缩系数减小,通过拟合得到了零压下U_(1-x)Pu_xO_2晶格常数和线膨胀系数随Pu比率变化的经验表达式。  相似文献   

13.
The coefficients of thermal expansion (CTE) of poly(vinyl chloride) (PVC)/talc composites were tested and the experimental data showed that the CTE of PVC/talc composites were closely related to the talc particle size and its distribution; for a given talc volume fraction, the smaller the talc particle size, and the lower the CTE of the PVC/talc composites. The theoretical equations proposed by Sideridis and Papanicolaou and by Lombardo, which were based on a single, spherical particle size, were found to predict well the CTE of PVC/talc composites, but with the obtained interphase thicknesses were too large to be believed. In order to overcome the shortcomings of these equations, being without variation of filler particle size and its distribution, a modified model was proposed. It was found that the modified model can predict well the CTE of PVC/talc composites, with almost the same and more reliable interphase thicknesses for different talc particle sizes, confirming the correctness of the modified model to some extent.  相似文献   

14.
《Composite Interfaces》2013,20(7-9):751-768
The aim of this study was to investigate the effects of electron beam (EB) irradiation on the morphological properties, crystallinity and surface area of henequen fiber and on the mechanical and thermal properties of henequen fiber reinforced polypropylene (PP) composites. The structure of henequen fiber was characterized by X-ray diffraction, mercury porosimetry and BET surface area analysis. The EB irradiation of 10 kGy led to the increasing of crystalline and surface pore area of henequen fiber, which contributed to the number of interlocking places with PP. From the results of tensile and impact strength tests, the highest value was observed for the composite reinforced with the henequen fiber treated with EB dose of 10 kGy, decreasing overall as EB dose increased. This tendency was also shown by coefficient of thermal expansion (CTE) measurements, but the value of CTE decreased until 50 kGy, meaning that a large total surface area can provide many interlocking places and so improve adhesion between fiber and matrix. Therefore, it can be concluded that the optimum pore surface area by 10 kGy irradiation contributes to successful mechanical interlocking between fiber and matrix and consequently enhances the mechanical and thermal properties of the composites.  相似文献   

15.
The effect of restricted geometry on specific heat capacity and thermal expansion of the triglycine sulfate (TGS)–borosilicate glass composites have been studied first. A decrease in the entropy and temperature of the P21 ? P21/m phase transition in the TGS component with decreasing the glass matrix pore diameter at the invariable specific heat and thermal expansion coefficient has been observed. The estimates are indicative of the minor effect of internal pressure on the TGS pressure coefficient dTC/dp in the composites.  相似文献   

16.
在303~383 K和NPT系综和COMPASS力场下对β-1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷(HMX)超晶胞初始结构的分子动力学模拟,得到常压下各温度的晶体平衡构型并发现分子的堆积方式不变;通过线性拟合求算出线膨胀系数与实验值相近,体现出明显的各向异性. 采用密度泛函理论方法对沿各晶轴方向膨胀率变化(100%~105%)的HMX单胞模型进行了总能计算,得到的能量变化率体现各向异性并与热膨胀系数值关联,建立了关联方程. 由此阐 释了HMX晶体热膨胀各向异性的本质即特定的分子堆积模式.  相似文献   

17.
The compressibility, the temperature dependence of bulk modulus, the pressure dependence of normalized volume V/V0, thermal expansion coefficient and Debye temperature of LaNi5-xAlx compounds are successfully obtained using the first-principles plane-wave pseudopotential (PW-PP) method, the EOSFIT6.0 software and the quasiharmonic Debye model. The rapid decrease of relative lattice constant a/a0 shows that the deformation is easier in directions normal to the c-axis than that along it. The relationships between bulk modulus B and pressure at different temperatures are also analysed. It is found that the bulk modulus B increases monotonically with increasing pressure. Moreover, the pressure dependences of thermal expansion and Debye temperature are also successfully obtained. The calculated results are in agreement with the experimental data.  相似文献   

18.
用高温融熔法制备了Eu^3+掺杂摩尔分数为1%的(60-X)Bi2O3-XGeO2-30B2O3-10ZnO(摩尔分数X=5,10,20,30)系统玻璃。测定了玻璃的差热分析曲线、发射光谱与激发光谱。从发射光谱与稀土Eu^3+离子光学跃起矩阵元的特点,计算了Eu^3+光学跃迁的参量Ω2与Ω1。结果显示强度参量Ω2与Ω4随着GeO2量的增加而增加,表明材料的对称性降低,Eu-O键强增加,共价性增加。玻璃的软化温度随GeO2组份的增加而提高。在GeO2摩尔分数达10%时.析晶起始温度与玻璃软化温度的差达最大,约146℃,表明该玻璃的热稳定性最好。  相似文献   

19.
YBa2Cu3Oy is an orthotropic material with different material properties in a, b and c directions, such as Young’s modulus, coefficient of thermal expansion (CTE), and thermal conductivity. It is assumed that the material properties of inhomogeneous high temperature superconductor (HTS) vary with different height coordinate and temperature. A model is presented in this paper to calculate the thermal stress of inhomogeneous HTS when temperature decreases from ambient to operating conditions (cryogenic temperatures). By fitting a second order polynomial to the experimental data, value of the material properties of inhomogeneous HTS can be obtained. Then, through the proposed graded finite element method, the coupled thermo-mechanical equations were solved numerically. The numerical results show that the temperature profiles distribute the function of time after soaking. It is notable that the temperature profile reaches steady in a very short period of time, so the thermal stress suddenly increases to a very high level for a bulk superconductor. It is also shown that the closer to the sample internal region it is, the larger the heat fluxes are. Besides, the maximum tensile stresses, i.e. the peeling stresses, occur near bottom corner of inhomogeneous HTS. It is intended that the model presented in this paper could be useful to researchers who are interested in mechanical properties of inhomogeneous HTS.  相似文献   

20.
《Current Applied Physics》2020,20(4):510-518
This paper is devoted to studying the thermal and mechanical properties of aminated graphene (AG)/epoxy nanocomposites connected by covalent bond using molecular dynamics (MD) simulation. The effects of crosslinking degree, mass fraction and functionalized graphene (FG) type on AG/epoxy nanocomposites are considered. The elasticity modulus (E), the glass transition temperature (Tg), the coefficient of thermal expansion (CTE) and the interfacial energy (Eint) are also investigated. The MD simulation results indicate that, when the mass fraction of AG is between 1.2% and 3.1% and crosslinking degree reaches about 70%, the E, Tg, Eint and CTE of AG/epoxy nanocomposites are significantly improved compared with those of pure epoxy and graphene/epoxy nanocomposites. The reason is that AG not only possesses some excellent thermodynamic properties of graphene, but also has the function of curing agent to crosslink with epoxy monomer to form the carbon-nitrogen (C–N) covalent bond. A better interfacial interaction between nanoparticles and epoxy is essential in enhancing the thermal and mechanical properties of nanocomposite materials, which will provide a microscopic theoretical basis for the study of epoxy nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号