共查询到20条相似文献,搜索用时 20 毫秒
1.
With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. However, work continues to find optimal mode and frequency selection for a given application. This “optimal” mode could give the highest sensitivity to defects or the greatest penetration power, increasing inspection efficiency. Since material properties used for modeling work may be estimates, in many cases guided wave mode and frequency selection can be adjusted for increased inspection efficiency in the field. In this paper, a novel mode and frequency perturbation method is described and used to identify optimal mode points based on quantifiable wave characteristics. The technique uses an ultrasonic phased array comb transducer to sweep in phase velocity and frequency space. It is demonstrated using guided interface waves for bond evaluation. After searching nearby mode points, an optimal mode and frequency can be selected which has the highest sensitivity to a defect, or gives the greatest penetration power. The optimal mode choice for a given application depends on the requirements of the inspection. 相似文献
2.
We report on the first experimental demonstration of higher-order Laguerre-Gauss (LG(p)(?)) mode generation and interferometry using a method scalable to the requirements of gravitational wave (GW) detection. GW detectors which use higher-order LG(p)(?) modes will be less susceptible to mirror thermal noise, which is expected to limit the sensitivity of all currently planned terrestrial detectors. We used a diffractive optic and a mode-cleaner cavity to convert a fundamental LG(0)(0) Gaussian beam into an LG(3)(3) mode with a purity of 98%. The ratio between the power of the LG(0)(0) mode of our laser and the power of the LG(3)(3) transmitted by the cavity was 36%. By measuring the transmission of our setup using the LG(0)(0), we inferred that the conversion efficiency specific to the LG(3)(3) mode was 49%. We illuminated a Michelson interferometer with the LG(3)(3) beam and achieved a visibility of 97%. 相似文献
3.
Elliptical gain guiding fibers in which gain guiding effects are dominant compared to conventional index guiding fiber is
analyzed by solving Mathieu equations with complex-valued fiber parameters. The properties of mode propagation and single
mode operation are evaluated in this elliptical gain guiding fiber with the assumption of a uniform gain distribution in the
active core medium. Threshold for lossless mode propagation increases exponentially with the eccentricity of the elliptical
cross section. Further, the difference in threshold between the lowest two order modes is constant for arbitrary eccentricity. 相似文献
4.
Hui Qi 《Waves in Random and Complex Media》2019,29(1):93-110
By the means of the guided wave theory, the scattering of SH guided wave by a circular inclusion in an infinite piezoelectric material strip is investigated. With the aid of repeated image superposition, the analytical expression of scattering wave is conducted, which satisfies the stress free and electric insulation conditions on the upper and lower horizontal boundaries of the strip. According to the boundary condition, integral equation is set up and analytical expression of dynamic stress concentration factor and electric field intensity concentration factor are obtained. The influence of the order of guided waves, the physical parameters of the medium and position of the circular inclusion on the dynamic stress concentration factor and electric field intensity concentration factor are analyzed and compared with the existing literature in calculating example. 相似文献
5.
《声学学报:英文版》2017,(2)
The pipe bend significantly changes the propagation characteristics of guided wave,and makes the interpretation of the received signals difficult.Therefore,better understanding of guided wave propagating in bended pipe is essential for the inspection of pipeline comprising bends.First of all,the different features of dispersion curves derived with the semi-analytical finite element method for guided wave in bended pipes are summarized.Secondly,based on the dispersion curves for guided wave in bended pipes,experiments are performed to investigate the mode conversions of L(0,1) mode guided wave traveling through pipe bends.It is found that,except for the mode conversion from L(0,1) to F(1,1),the L(0,1) reflections of bends are also observed in some cases,which are proven to be the mode converted negative L(0,1)mode guided wave,and the negative L(0,1) mode guided wave becomes more obvious with the decrease of excitation frequency and bending radius.The findings of this paper will provide some insight for guided wave behavior in bended pipe,and generalize the application of guided wave inspection in practical pipelines. 相似文献
6.
管道弯头显著改变了导波传播特性,影响了对检测信号的解读,研究弯头对导波传播特性的影响是实现复杂管道系统导波检测的基础。采用半解析有限元法计算弯管导波频散曲线,分析了弯管导波频散曲线所呈现的不同特征,并基于弯管导波频散曲线,以低频L(0,1)模态导波为研究对象,实验研究了低频L(0,1)模态导波通过管道弯头时的模态变换特征。研究结果发现,当L(0,1)模态导波通过管道弯头时,不仅会发生L(0,1)到F(1,1)的模态变换,还会模态变换出反向L(0,1)模态导波,即弯头反射现象,且随着激励频率的降低和弯头弯曲半径的减小,弯头反射现象愈发明显。研究结果将深化对弯管导波传播特性的认识,推动导波检测技术在复杂管道系统检测中的应用。 相似文献
7.
Shear-Horizontally (SH) polarized, ultrasonic, guided wave modes are considered in order to infer changes in the adhesive properties at several interfaces located within an adhesive bond joining two metallic plates. Specific aluminium lap-joint samples were produced, with different adhesive properties at up to four interfaces when a glass–epoxy film is inserted into the adhesive bond. EMAT transducers were used to generate and detect the fundamental SH0 mode. This is launched from one plate and detected at the other plate, past the lap joint. Signals are picked up for different propagation paths along each sample, in order to check measurement reproducibility as well as the uniformity of the adhesively bonded zones. Signals measured for four samples are then compared, showing very good sensitivity of the SH0 mode to changes in the interfacial adhesive properties. In addition, a Finite Element-based model is used to simulate the experimental measurements. The model includes adhesive viscoelasticity, as well as spatial distributions of shear springs (with shear stiffness KT) at both metal–adhesive interfaces, and also at the adhesive–film interfaces when these are present. This model is solved in the frequency domain, but temporal excitation and inverse FFT procedure are implemented in order to simulate the measured time traces. Values of the interfacial adhesive parameters, KT, are determined by an optimization process so that best fit is obtained between both sets of measured and numerically predicted waveforms. Such agreement was also possible by adjusting the shear modulus of the adhesive component. This work suggests a promising use of SH-like guided modes for quantifying shear properties at adhesive interfaces, and shows that such waves can be used for inferring adhesive and cohesive properties of bonds separately. Finally, the paper considers improvements that could be made to the process, and its potential for testing the interfacial adhesion of adhesively bonded composite components. 相似文献
8.
A method for generation of a wave-field that is a plane wave is described. This method uses an array of loudspeakers phased so that the field in the wave-number domain is nearly concentrated at a point, this point being at the wave-number vector of the desired plane wave. The method described here for such a wave-number concentration makes use of an expansion in spherical harmonics, and requires a relatively small number of measurement points for a good approximate achievement of a plane wave. The measurement points are on a spherical surface surrounding the array of loudspeakers. The input signals for the individual loudspeakers can be derived without a matrix inversion or without explicit assumptions about the loudspeakers. The mathematical development involves spherical harmonics and three-dimensional Fourier transforms. Some numerical examples are given, with various assumptions concerning the nature of the loudspeakers, that support the premise that the method described in the present paper may be useful in applications. 相似文献
9.
10.
水平变化环境下声场简正波解的计算精度和效率取决于本地简正波的计算方法。提出一种完备的一阶微扰理论方法,并引入迭代算法,获得了本地简正波水平波数和本征函数的精确表达式。数值结果表明,改进后的微扰简正波方法得到的简正波水平波数和本征函数精度比前人方法更高,与KRAKENC计算结果吻合较好,而计算速度比KRAKENC快100倍。同时将微扰简正波方法与耦合简正波理论结合,应用到海水声速水平变化剧烈的孤立子内波群环境。数值结果表明,该方法计算得到的传播损失与COUPLE07在单次散射近似下的计算结果吻合较好,计算速度比COUPLE07快25倍,并将该方法在声场计算中的适用频率提高到了3 kHz。 相似文献
11.
We analyze the origin of the fake modes introduced by the plane wave expansion method with three-dimension (3D) supercell approximation. Through the detailed analysis of the energy distribution of fake modes and real modes, we propose the plane wave expansion-three planar-slab waveguides method to remove the fake modes and obtain the fake mode free band structure of a two-dimensional air hole photonic crystal slab. To the best of our knowledge, this is the first time that such a fake mode free photonic crystal band structure is presented. Our method is also definitely useful in designing other 3D devices. 相似文献
12.
The crystalline texture of a sheet metal strongly affects its formability, so having knowledge of this texture is of great industrial relevance. The texture of rolled sheet metals, such as aluminium and steel, may be determined by ultrasonic measurement of the velocity of the zero order symmetric (S(0)) Lamb wave as a function of angle to the rolling direction. Electromagnetic acoustic transducers (EMATs) may perform this measurement without contacting the sample, therefore reducing perturbation to the plate wave system, as they are electromagnetically coupled to the sheet. The EMAT system measurements are non-destructive and may be made in real time, therefore offering advantages over the conventional techniques such as X-ray and neutron diffraction. It has been noticed that in the two EMAT pitch-catch system, the apparent arrival times of the ultrasonic waves change with variation in lift-off (distance between sample and transducer) due to impedance and aperture effects. For precise and accurate texture parameters to be obtained, accurate absolute ultrasonic velocity measurement is required and hence lift-off must be compensated for. This is of particular importance to online inspection systems where constant lift-off may be difficult to maintain. The impedance behaviour of various coil geometries has been investigated as a function of lift-off and frequency and compared to the received ultrasonic signal and the drive current pulse profile. Theoretical models have been used to explain the observed behaviour, and hence a scheme has been proposed for the compensation of lift-off effects in real time. 相似文献
13.
Lung diseases, such as acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), are closely associated with altered lung elastic properties. Pulmonary function testing and imaging are routinely performed for evaluating lung diseases. However, lung compliance, a measure of lung elastic properties, is rarely used in clinic, because it is invasive and provides only a global and arguably biased estimate of lung elastic properties. Current ultrasound methods also cannot be used for imaging lungs because ultrasound cannot penetrate the lung tissue. In this paper, an ultrasound image guided and surface wave based method is proposed to measure regional lung surface wave speed and estimate lung elasticity noninvasively. The method described here was not explored before to the best knowledge of the authors. Experiments in an ex vivo pig lung and an in vivo human lung pilot study are reported. The surface wave speed is measured to be 1.83 ± 0.02 m/s at 100 Hz by ultrasound for the ex vivo pig lung at 3 mmHg pressure, which is validated by an optical measurement. An in vivo human lung pilot experiment measures the surface wave speed to be 2.41 ± 0.33 m/s for the 100 Hz sinusoidal wave at total lung capacity (TLC) and 0.99 ± 0.09 m/s at functional residual capacity (FRC). These values of wave speed fall well within the range of available literature. 相似文献
14.
Ye Heng Wang 《International Journal of Infrared and Millimeter Waves》1993,14(12):2543-2554
This paper shows that the full guided mode expansion method and the optimized sine method, with a rather rigorous procedure of determing the dimensions of reference waveguides, provide simple, fast and accurate way for the scalar analysis of arbitrarily shaped optical waveguides. Use of a smaller matrix results in good agreement with previous works. 相似文献
15.
Efficient temperature compensation strategies for guided wave structural health monitoring 总被引:1,自引:0,他引:1
Anthony J. Croxford Jochen Moll Paul D. Wilcox Jennifer E. Michaels 《Ultrasonics》2010,50(4-5):517-528
The application of temperature compensation strategies is important when using a guided wave structural health monitoring system. It has been shown by different authors that the influence of changing environmental and operational conditions, especially temperature, limits performance. This paper quantitatively describes two different methods to compensate for the temperature effect, namely optimal baseline selection (OBS) and baseline signal stretch (BSS). The effect of temperature separation between baseline time-traces in OBS and the parameters used in the BSS method are investigated. A combined strategy that uses both OBS and BSS is considered. Theoretical results are compared, using data from two independent long-term experiments, which use predominantly A0 mode and S0 mode data respectively. These confirm that the performance of OBS and BSS quantitatively agrees with predictions and also demonstrate that the combination of OBS and BSS is a robust practical solution to temperature compensation. 相似文献
16.
提出谱有限元方法研究层状各向异性复合板中导波的色散特性和波结构。基于三维弹性动力学方程,用有限元方法离散波导截面,波传播方向的位移用简谐波表示,得到了导波色散的特征方程。分析了单层和双层复合板中导波沿不同方向传播的色散特性和波结构,讨论了双层复合板中层厚比对相速度的影响。数值研究结果表明:导波的对称模态沿纤维方向传播时在较宽的频率范围内保持弱色散状态。双层复合板中导波基本模态的相速度在低频时受层厚比的影响较明显,随着频率的增加趋向于相速度较低的材料。数值模拟结果为导波用于复合材料定量无损检测和性能评价提供理论依据。 相似文献
17.
Energy propagation in random viscoelastic media is considered in this Letter. The forced response of uncertain waveguide subject to time harmonic loading is treated. This energy model is based on a spectral approach called the “Stochastic Wave Finite Element” (SWFE) method which is detailed in this Letter. Assuming that the random properties are spatially homogeneous in the media, the SWFE is a hybridization of the deterministic wave finite element and a parametric probabilistic approach. The proposed model is applicable in a wide frequency band with reduced time consumption. Numerical examples show the effectiveness of the proposed approach to predict the statistics of kinematic and quadratic variables of guided wave propagation. The results are compared to Monte Carlo simulations. 相似文献
18.
接触缺陷的振动调制超声导波检测技术研究 总被引:2,自引:0,他引:2
针对常规线性超声检测方法无法实现板结构接触类缺陷(如微裂纹、脱粘等)检测问题,将超声导波技术与振动声调制技术相结合,利用稀疏分布传感器发展了一种板结构中接触缺陷非线性超声检测方法。通过低频振动改变缺陷的接触状况,使得通过接触面的高频导波信号的相位和幅值受到调制。对受低频振动调制的超声导波二维时间序列进行时频分析,由于接触类缺陷的存在,在振动调制超声导波序列的时频分布上出现明显的低频振动频率分量。利用提取出的低频振动频率下的超声导波信号,进行了结构接触缺陷成像处理。检测试验表明,基于振动声调制的超声导波缺陷成像方法可以实现结构中的接触类缺陷检测。 相似文献
19.
20.
A novel phase unwraping method has been presented and evaluated in this paper. This method works by first constructing a quality map based on the characteristic of the active triangulation system from the wrapped phase data. The quality map is then used to guide the unwrapping. In order to reduce the execution time of phase unwrapping, we tessellate the whole wrapped phase map into blocks. Blocks with higher confidence will be unwrapped first. Experiment shows that this method can unwrap the wrapped phase map derived from the digital moiré system successfully. In data integration stage, only data with higher confidence will be reserved and used to merge together to form a complete 3D model. 相似文献