首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 244 毫秒
1.
吴赛  李伟斌  石峰  蒋世春  蓝鼎  王育人 《物理学报》2015,64(9):96101-096101
亲水玻璃基片在掩模板的保护下, 通过喷涂超疏水层, 得到了被疏水层包围的圆形亲水区域. 胶体液滴在这一区域被很好地限制, 并且液滴体积可以在较大范围内变化, 体积的变化可以改变液滴与基片的表观接触角. 通过显微观察手段原位观察了表观接触角为疏水的受限胶体液滴蒸发过程中粒子沉积行为. 在整个蒸发过程中, 受限液滴边界被钉扎在亲疏水交界处. 粒子沉积过程中, 驱动粒子的液滴内部流动会发生变化. 粒子沉积图案形成过程由三种流体行为控制, 最初, Marangoni效应占主导作用, 驱动粒子在液滴表面聚集, 随之沉积到液滴边缘; 随着蒸发进行, 当接触角变小(<60°)时, 由于边界蒸发速度更快导致的毛细补偿流使得粒子直接向边界沉积. 在干燥的最后阶段, 亲水区域内的液层变得很薄, 只有一单层粒子存在于这一薄液层中, 蒸发继续进行时, 薄液层发生失稳使得粒子迅速聚集而形成网络化图案, 由于粒子间距变小, 球间的液桥毛细力也会参与到这一聚集过程中.  相似文献   

2.
A colloidal dispersion droplet evaporating from a surface, such as a drying coffee drop, leaves a distinct ring-shaped stain. Although this mechanism is frequently used for particle self-assembly, the conditions for crystallization have remained unclear. Our experiments with monodisperse colloidal particles reveal a structural transition in the stain, from ordered crystals to disordered packings. We show that this sharp transition originates from a temporal singularity of the flow velocity inside the evaporating droplet at the end of its life. When the deposition speed is low, particles have time to arrange by Brownian motion, while at the end, high-speed particles are jammed into a disordered phase.  相似文献   

3.
张文彬  廖龙光  于同旭  纪爱玲 《物理学报》2013,62(19):196102-196102
液体蒸发驱动的颗粒自组装现象在许多的工业技术中有重要应用. 本文利用显微镜观测含有颗粒物质的液滴变干后留在固体表面的颗粒形成的环状沉积图案. 采用微米粒径的SiO2小球水溶液液滴蒸发变干模拟咖啡环的形成过程, 结果发现液滴蒸发过程中接触线的钉扎是环状沉积的必要条件. 在液滴蒸发过程中颗粒随着补偿流不断的向液滴边缘移动, 聚集在接触线处形成环. 液滴蒸发变干后残留在液滴内部的颗粒数随颗粒质量分数的增加而增加, 可以达到单层的颗粒排列. 而玻璃衬底上的颗粒环在颗粒质量分数很小时, 形成单层排列, 且一排一排地生长. 蒸发过程中颗粒环由于液滴边缘的尺寸限制向液滴中心缓慢移动. 这会导致液滴中不同大小颗粒的分离. 关键词: 液滴 接触线 蒸发 颗粒  相似文献   

4.

Abstract  

We have been interested in behaviors of suspended particles in a volatile droplet placed on a smooth substrate. It is known that the particles gather and deposit in the vicinity of the macroscopic contact line of the droplet, which is generally called ‘coffee stain problem’. A convective flow induced by non-uniform evaporation through the interface brings suspended particles toward the pinned contact line in the drying droplet, which forms a ring stain. We have focused on the dynamics of the droplet with/without suspended particles spreading on the solid substrate and on the behaviors of particles in the evaporating droplet. Spreading process of the droplet is significantly affected by the suspended particles. We indicate flow patterns in the droplet, in which the flow exhibits a modal structure with a mode number in the azimuthal direction, and indicate particles depositions after the dryout of the droplet. Three-dimensional particle tracking velocimetry is applied to reconstruct such unique flow patterns in the spreading process of the droplet. Resultant patterns of the particles depositing on the substrate are introduced.  相似文献   

5.
We describe a spatial pattern arising from the nonuniform evaporation of a colloidal film. Immediately after the film deposition, an obstacle is positioned above its free surface, minimizing evaporation at this location. In a first stage, the film dries everywhere but under the obstacle, where a liquid region remains. Subsequently, this liquid region evaporates near its boundaries with the dry film. This loss of water causes a flow of liquid and particles from the center of the obstructed region to its periphery. The final film has a dip surrounded by a rim whose diameter is set by the obstacle. This turns out to be a simple technique for structuring films of nanometric thickness.  相似文献   

6.
The thermal evolution of droplets of aqueous solution of lead nitrate was studied in a drop-tube furnace, which simulates typical conditions for material synthesis, through spray pyrolysis, and for the thermal destruction of liquid-containing waste. The processes of droplet evaporation, precursor precipitation within the droplet and thermolysis of the precipitated particles were followed by means of the spectral analysis of the ultraviolet light scattered by the aerosol produced during the heating of aqueous droplets (100 μm) of lead nitrate, with different salt concentrations, from ambient temperature up to 1200 K. Dimensions and physico-chemical properties of the droplets/particles were obtained in situ by means of ultraviolet spectra of light scattering (UVSLS) and compared with scanning electron microscopy (SEM) of the sampled material. A plasma generated in the air by an optical breakdown induced by a Nd:YAG laser was employed as the light source in the wavelength range 200–400 nm, thus allowing an exceptionally high photon flux in the ultraviolet region where intense and species-specific interactions with metal species take place. The spray drying process was followed by measuring the light transmitted by the droplets in the backward region. As the drying process progresses, the surface concentration reaches a saturation value and solute is deposited as a solid phase forming a surface crust, which grows steadily. At this point in the process of droplet drying, information was retrieved from the light reflected by the particle interface. Two spectral scattering behaviors were detected at temperatures above the salt precipitation within the droplet. On the basis of Mie calculations and SEM measurements, these behaviors were attributed to lead nitrate particles with typical diameters of the residual droplets (about 50 μm) and to micrometer-sized lead oxide particles. The effect of salt concentration on the drying process and the thermolysis of lead nitrate to oxide was investigated by changing the salt concentration from very dilute conditions up to almost the saturation concentration.  相似文献   

7.
The results of study of evaporation of water droplets and NaCl salt solution from a solid substrate made of anodized aluminum are presented in this paper. The experiment provides the parameters describing the droplet profile: contact spot diameter, contact angle, and droplet height. The specific rate of evaporation was calculated from the experimental data. The water droplets or brine droplets with concentration up to 9.1 % demonstrate evaporation with the pinning mode for the contact line. When the salt concentration in the brine is taken up to 16.7 %, the droplet spreading mode was observed. Two stages of droplet evaporation are distinguished as a function of phase transition rate.  相似文献   

8.
We report the effective fabrication of two-dimensional (2D) arrays of submicron colloidal particles. These colloidal arrays are produced in thin layers of monodisperse colloid suspensions on flat surfaces of solids such as clean glass or cleaved mica. The process of colloid assembling includes two steps, nucleation and growth, similar to those found in crystallization in solution but each of the steps in detail progresses with different mechanisms. The nucleation process is initiated by a special kind of capillary force acting parallel to the surface. The growth is guided by a laminar flow of water to the crystals, which is driven by water evaporation from 2D arrays. What is distinguishable in the 2D assembling is its active nature governed by the forces and flows, making a contrast to the diffusive mechanism in ordinary crystallization. With this two-step mechanism, a domain of hexagonally packed colloidal array can grow with time. A large and uniform film of particle monolayer is, thus, formed in a short period, from several seconds up to several minutes depending on the conditions controlled.  相似文献   

9.
Effect of temperature and surface tension on surface during sedimentation is studied using atomic force microscopy. Effects of surface tension is incorporated by using ∼1 mm radius water droplets. Surface tension of water droplet directed the deposition of dissolved particles around the perimeter of the droplet; leaving almost hollow circle in the middle with light deposition due to the particles being close to the surface. Evaporating shallow water solutions left random salt structures on the surface. Growth exponents are calculated along with the fractal dimension. For sedimentation process in shallow water (depth of ∼2 mm), a transition is observed from continuum model (1.88±0.2) to KPZ (0.406±0.082) universality class around ∼1 μm at room temperature. For droplets evaporation, turbulent (multi-affine) to self-affine transition is observed. Fractal dimensions (FD) for the droplets are found to be between one and two. The FD values are consistent with the fact that competing nonlinear terms are present in the system.  相似文献   

10.
Complex and elegant protein patterns in rosette, scallop, Chinese arrow and dendrite shapes at macroscopic length scales were prepared using salt-induced molecular self-assembly and droplet evaporation methods. The direct visual observation method using fluorescence microscopy was adopted to characterize the formation of these protein patterns in situ. Further studies from an optical interferometric profiler have shown that both rosette and scalloped protein patterns are hierarchical structures of concentric rings consisting of many prism-like columnar stacks, with each of the stack having thousands of protein molecules. Systematic experimental studies were performed to investigate the influence of salt concentration, protein concentration and evaporation rate on the morphologies of protein patterns. Upon the analysis of the representative fluorescent microscope images some theoretical explanations, based on Deegan’s theory on the “coffee ring” effect and the dynamic self-assembly mechanism, were proposed to illustrate the dynamics for the formation of different protein patterns. Two different evaporation modes have been found: edge-enhanced evaporation for low salt concentration solutions, i.e., the higher evaporation rate exists at the edge of the droplet; center-enhanced evaporation for high salt concentration solutions, in which faster evaporation occurs at the droplet center consisting of a lot of crystallized salts.  相似文献   

11.
X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' ( q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.  相似文献   

12.
Both theoretically and experimentally, the suitability of a technique for studying the finely dispersed spraying of liquids based on an analysis of salt residue particles formed as a result of evaporation of test solutions of NaCl in water was evaluated. Data gained in studying the dispersion of droplets in the droplet clouds produced by pulsed and ultrasonic atomizers are reported. During pulsed atomization, salt residue particles of various morphologies were found to form, this finding pointing to realization of unsteady conditions for particle evolution.  相似文献   

13.
刘青  王鸣  郭文华  闫海涛  喻平 《物理学报》2010,59(10):7086-7090
设计了一种胶体光子晶体修饰的光纤. 采用恒温快速蒸发法直接在经切割刀处理后的光纤端面生长胶体晶体,再与另一根切割后的光纤在毛细玻璃管中完成对接,制备成胶体光子晶体修饰的光纤. 用扫描电子显微镜和光谱分析仪对样品的形貌、结构以及光学特性进行分析. 实验结果表明,粒径为640 nm、体积分数约为0.5%的SiO2胶体微球溶液在60 ℃的情况下沉积,大约12 h后可得到质量较高的胶体光子晶体. 在SEM下,观察到端面的胶体晶体为面心立方(fcc)结构. 透射光谱证明,该结构在(111)面上  相似文献   

14.
Recent studies of crystal nucleation and further microstructure formation in colloidal model systems are reviewed. Homogeneous as well as different heterogeneous nucleation scenarios will be discussed. We focus on the crystallization process of one component colloidal model systems with hard sphere like interaction, long range electrostatic interaction and depletion force induced attractive interaction. Heterogeneous crystallization on flat and smooth substrates, on structured substrates, induced by different kind of seed particles as well as inoculation adding a larger amount of seeds will be presented.  相似文献   

15.
为探究闪蒸喷雾冷却的微观机理, 设计并搭建了液滴悬挂式真空闪蒸实验装置, 利用可视化窗口探究Tween20 液滴闪蒸过程中的闪蒸特性及气泡生长机理. 液滴在快速降压过程中形态会经历气泡成核、气泡生长、伴随气泡生长、爆裂这四个阶段的变化, 并反复循环这一过程直至液滴稳定蒸发. 对于液滴温度的变化, 闪蒸室的终态压力起到了决定性的作用, 并且其终态温度随压力的升高明显上升. 同时通过液滴闪蒸过程形态图分析发现, 液滴在剧烈爆炸阶段其温度也发生明显下降; 在稳定蒸发阶段, 其温度也将开始稳定不变. 因此可知液滴的剧烈爆炸会带走其自身的大量热量. 而 Tween20 浓度对液滴温度的影响微乎其微, 但其会使液滴内气泡的初始成核时间发生明显滞后, 并抑制液滴内的气泡发生破裂.  相似文献   

16.
We study the kinetics of an aggregation process induced by adding salt to a stable colloidal suspension of 73 nm (diameter) particles. Despite the subdiffraction size of the colloidal particles, the process is monitored via optical microscopy, which is used here to obtain time-resolved scattering information about the colloidal aggregates. The radius of the aggregates is determined as a function of time and their fractal dimension is extracted. Our results are compatible with a diffusion limited aggregation process, as independently confirmed by spectral turbidimetry measurements on the same sample.  相似文献   

17.
Metallic systems are widely used as materials in daily human life. Their properties depend very much on the production route. In order to improve the production process and even develop novel materials a detailed knowledge of all physical processes involved in crystallization is mandatory. Atomic systems like metals are characterized by very high relaxation rates, which make direct investigations of crystallization very difficult and in some cases impossible. In contrast, phase transitions in colloidal systems are very sluggish and colloidal suspensions are optically transparent. Therefore, colloidal systems are often discussed as model systems for metals. In the present work, we study the crystallization process of charged colloidal systems from the very beginning. Charged colloids offer the advantage that the interaction potential can be systematically tuned by a variation of the particle number density and the salt concentration. We apply light scattering and ultra-small angle x-ray scattering to investigate the formation of short-range order in the liquid state even far from equilibrium, crystal nucleation and crystal growth. The results are compared with equivalent studies on metallic systems.  相似文献   

18.
贝帮坤  王华光  张泽新 《物理学报》2019,68(10):106401-106401
从工业上的大尺寸晶体生长到实验室中受限小体系的结晶,结晶是普遍存在的物理现象,也一直是物理学中的重要研究课题.与大尺度结晶相变的研究相比,对于有限小尺度体系结晶过程的研究相对较少.本文通过设计具有吸引相互作用的胶体体系,在实验上研究了有限小尺寸胶体体系的二维结晶相变.通过计算和分析径向分布函数、泰森多边形以及取向序参量,发现有限小尺寸体系的结晶过程是从中央高密度区域开始,随着结晶的进行,周围液相减小而晶相增加,最后完全转变为晶态的过程.体系结晶速率呈现两个阶段:在结晶初期中央区域是高密度的亚稳态液体,会降低结晶自由能能垒,使得体系快速结晶;随后晶相长大,亚稳态液体消失,体系结晶速率变慢.此外,通过统计有序度参量的分布发现:在结晶过程中,序参量出现双峰分布,分别对应液相和晶相,与大尺度胶体体系的二维结晶行为一致,说明序参量分布的变化规律是二维结晶相变的重要特征.  相似文献   

19.
This paper investigates a simplified metal induced crystallization (MIC) of a-Si, named solution-based MIC (S-MIC). The nickel inducing source was formed on a-Si from salt solution dissolved in de-ionized water or ethanol. a-Si thin film was deposited with low pressure chemical vapour deposition or plasma enhanced chemical vapour deposition as precursor material for MIC. It finds that the content of nickel source formed on a-Si can be controlled by solution concentration and dipping time. The dependence of crystallization rate of a-Si on annealing time illustrated that the linear density of nickel source was another critical factor that affects the crystallization of a-Si, besides the diffusion of nickel disilicide. The highest electron Hall mobility of thus prepared S-MIC poly-Si is 45.6cm2/(V.s). By using this S-MIC poly-Si, thin film transistors and display scan drivers were made, and their characteristics are presented.  相似文献   

20.
We investigate the swelling of colloidal spherical polyelectrolyte brushes in the presence of different counterions. The colloidal particles consist of a solid poly(styrene) core of ca. 100 nm diameter onto which linear polyelectrolyte chains are chemically grafted. Two types of polyelectrolyte chains have been used here: The cationic polyelectrolyte poly(2-(acryloyl)ethyltrimethylammonium chloride)) (PATAC) and the anionic poly(styrenesulfonate) (PSS). Both systems are dispersed in water and the degree of swelling of the surface layer is studied by dynamic light scattering. Adding more and more salt leads to a strong shrinking of the surface layer as expected for polyelectrolyte brushes. It is shown that data obtained at low ionic strength can be collapsed on suitable master curves for monovalent and divalent counterions, respectively. For some ions, however, high salt concentrations may lead to a re-swelling of the brush layer in case of the cationic systems. This points to specific interactions of the counterions with the PATAC chains. This strong specific interaction between the counterions and the attached polyelectrolyte may even lead to flocculation of the particles at intermediate salt concentration. Surprisingly, for iodide and magnesium counterions the solubility increases again if the salt concentration is raised to 1 mol/l. Hence, specific interaction leads to salting-out effects as well as to salting-in effects for these colloidal particles. All specific effects seen at high concentrations of added salt can be explained by the increase of the reduced excluded-volume parameter which is due to the adsorption of salt ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号