首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
谢积鉴  薛郁 《物理学报》2012,61(19):194502-194502
在室内行人疏散过程中,行人博弈对疏散效率有着重要的影响.本文把抵制博弈策略更新的强度定义为抵制强度. 为了研究抵制强度对疏散效率的影响, 通过在行人博弈策略更新的概率中引入抵制强度,基于元胞自动机模型数值计算在不同的行人密度, 出口宽度下疏散总时间随抵制强度变化的关系.结果表明: 室内行人疏散过程中, 抵制强度小会使得争抢行为极其容易蔓延. 当行人密度小且出口宽大时, 输入以急速疏散为主的规范信息,鼓励行人模仿优胜者更新博弈策略, 当行人密度大且出口狭小时, 输入以避让为主的规范信息抑制行人争抢,都能提高疏散效率. 最后找出不同条件下与最短疏散总时间相对应的优化抵制强度, 为提高室内行人疏散效率提供一个新的视角.  相似文献   

2.
基于元胞自动机的行人疏散流仿真研究   总被引:2,自引:0,他引:2       下载免费PDF全文
岳昊  邵春福  姚智胜 《物理学报》2009,58(7):4523-4530
基于元胞自动机对行人疏散流进行仿真研究.模型利用两个动态参数反映行人移动区域内的疏散情况,从而决定行人的行为选择.模型中行人可以根据自身周围的情况选择移动、等待行为.本文仿真研究了行人在正常疏散环境下,系统规模、疏散人数、安全出口宽度、多个安全出口布局对行人疏散时间的影响.研究结果表明,行人疏散时间随行人数量呈线性增加;随安全出口宽度呈负指数性减少;同时,多个安全出口布局的不平衡也会对行人的疏散过程和疏散时间产生一定的影响. 关键词: 元胞自动机 行人疏散流 动态参数 疏散时间  相似文献   

3.
董力耘  陈立  段晓茵 《物理学报》2015,64(22):220505-220505
基于教室人群疏散实验, 从中归纳出疏散过程中行人的基本运动特征. 将桌椅分别视为不可穿越和可穿越的静态障碍物, 而行人则被当成可移动的障碍物, 这将导致背景场随人群的运动而动态更新, 因此可以更好地反映前方拥挤程度对后面人群路径选择行为的影响. 采用基于动态背景场的元胞自动机模型研究了不同桌椅排列和出口宽度的教室人群疏散过程, 给出了疏散时间的空间分布以及平均和最大疏散时间, 再现了实验中人群疏散的基本特征. 数值模拟结果表明, 疏散时间取决于桌椅的排列方式和教室出口的宽度. 对于同一种排列, 出口越小则疏散时间越长; 对于给定的出口宽度, 通常随着过道数的增加, 疏散时间随之减少; 当过道数增加且过道宽度不足以两人并行, 从两侧进入过道的行人会发生冲突, 使疏散效率有所降低; 靠近出口一侧墙壁设置过道有利于人群的疏散. 文中进一步分析了模拟与实验结果存在差异的原因.  相似文献   

4.
陈亮  郭仁拥  塔娜 《物理学报》2013,62(5):50506-050506
为研究行人疏散过程中的路径选择行为, 提出了一个基于元胞自动机的行人微观模型, 并组织了三组双出口教室内的学生疏散实验. 模型中, 行人路径选择行为受其到出口距离、前方路径通行能力和行人间排斥力影响. 通过观察实验结果, 得到一些相关现象. 利用实验结果对模型参数进行校正. 利用校正模型对该教室内疏散学生流进行仿真, 结果表明 模型能有效地刻画教室内学生流的疏散特征, 疏散时间随学生人数线性增加. 该研究有助于类似场景中行人疏散策略和方案的制定. 关键词: 元胞自动机 行人疏散 仿真 实验  相似文献   

5.
郭宁  姜锐  胡茂彬  丁建勋 《中国物理 B》2017,26(12):120506-120506
In this paper, the evacuation dynamics in an artificial room with only one exit is investigated via experiments and modeling. Two sets of experiments are implemented, in which pedestrians are asked to escape individually. It is found that the average evacuation time gap is essentially constant. To model the evacuation dynamics, an improved social force model is proposed, in which it is assumed that the driving force of a pedestrian cannot be performed when the resultant physical force exceeds a threshold. Simulation results are in good agreement with the experimental ones.  相似文献   

6.
朱诺  贾斌  邵春福  岳昊 《中国物理 B》2012,21(5):50501-050501
An improved dynamic parameter model is presented based on cellular automata. The dynamic parameters, including direction parameter, empty parameter, and cognition parameter, are formulated to simplify tactically the process of making decisions for pedestrians. The improved model reflects the judgement of pedestrians on surrounding conditions and the action of choosing or decision. According to the two-dimensional cellular automaton Moore neighborhood we establish the pedestrian moving rule, and carry out corresponding simulations of pedestrian evacuation. The improved model considers the impact of pedestrian density near exits on the evacuation process. Simulated and experimental results demonstrate that the improvement makes sense due to the fact that except for the spatial distance to exits, people also choose an exit according to the pedestrian density around exits. The impact factors α, β, and γ are introduced to describe transition payoff, and their optimal values are determined through simulation. Moreover, the effects of pedestrian distribution, pedestrian density, and the width of exits on the evacuation time are discussed. The optimal exit layout, i.e., the optimal position and width, is offered. The comparison between the simulated results obtained with the improved model and that from a previous model and experiments indicates that the improved model can reproduce experimental results well. Thus, it has great significance for further study, and important instructional meaning for pedestrian evacuation so as to reduce the number of casualties.  相似文献   

7.
A force-driving cellular automata model considering the social force on cell movement, such as the desirous willing of a pedestrian to exit, the repulsive interaction among pedestrians or between pedestrians and obstacles, was set up to investigate the evacuation behaviors of pedestrians at a T-shaped intersection. And an analogical formulation, taking reference of the magnetic force, was introduced to describe the above repulsive actions. Based on the model, the evacuation behaviors of pedestrians were simulated in terms of different pedestrian density, distribution and corridor width, and then evacuation time was obtained and analyzed. Furthermore, an experiment was conducted to verify the results of the presented model. The results demonstrate that when the density of pedestrians is greater than a certain threshold, pedestrians of a certain direction would be jammed by the repulsion from pedestrians of the counter flow from another direction, and the evacuation time of the former would be longer, even though they are closer to the exit, which would possibly result in a serious casualty in an emergency circumstance. And the phenomenon has been validated by the experiments well. In addition, a corresponding critical corridor width related to different DOPs, beyond which the evacuation time could be decreased rapidly due to a strong degradation of jamming behaviors near the T-shaped intersection, was also discovered and predicted by the proposed model.  相似文献   

8.
Based on the cellular automata method (CA model) and the mobile lattice gas model (MLG model), we have developed a heterogeneous lattice gas model for simulating pedestrian evacuation processes in an emergency. A local population density concept is introduced first. The update rule in the new model depends on the local population density and the exit crowded degree factor. The drift D, which is one of the key parameters influencing the evacuation process, is allowed to change according to the local population density of the pedestrians. Interactions including attraction, repulsion, and friction between every two pedestrians and those between a pedestrian and the building wall are described by a nonlinear function of the corresponding distance, and the repulsion forces increase sharply as the distances get small. A critical force of injury is introduced into the model, and its effects on the evacuation process are investigated. The model proposed has heterogeneous features as compared to the MLG model or the basic CA model. Numerical examples show that the model proposed can capture the basic features of pedestrian evacuation, such as clogging and arching phenomena.  相似文献   

9.
Guan-Ning Wang 《中国物理 B》2022,31(6):60402-060402
The study of the panic evacuation process is of great significance to emergency management. Panic not only causes negative emotions such as irritability and anxiety, but also affects the pedestrians decision-making process, thereby inducing the abnormal crowd behavior. Prompted by the epidemiological SIR model, an extended floor field cellular automaton model was proposed to investigate the pedestrian dynamics under the threat of hazard resulting from the panic contagion. In the model, the conception of panic transmission status (PTS) was put forward to describe pedestrians' behavior who could transmit panic emotions to others. The model also indicated the pedestrian movement was governed by the static and hazard threat floor field. Then rules that panic could influence decision-making process were set up based on the floor field theory. The simulation results show that the stronger the pedestrian panic, the more sensitive pedestrians are to hazards, and the less able to rationally find safe exits. However, when the crowd density is high, the panic contagion has a less impact on the evacuation process of pedestrians. It is also found that when the hazard position is closer to the exit, the panic will propagate for a longer time and have a greater impact on the evacuation. The results also suggest that as the extent of pedestrian's familiarity with the environment increases, pedestrians spend less time to escape from the room and are less sensitive to the hazard. In addition, it is essential to point out that, compared with the impact of panic contagion, the pedestrian's familiarity with environment has a more significant influence on the evacuation.  相似文献   

10.
永贵  黄海军  许岩 《物理学报》2013,62(1):10506-010506
利用改进的层次域元胞自动机模型,研究了正菱形网格空间中的行人疏散问题.这类网格可以避免行人贴近房间墙壁或障碍物,转移概率考虑了各种逃生受阻因素.数值仿真显示,出口处的行人分布与实验快照展示的行人分布基本相同,疏散时间和出口宽度呈线性关系,行人流率接近实验结果.  相似文献   

11.
禹尔东  吴正  郭明旻 《物理学报》2014,63(9):94501-094501
本文设计了一个双出口房间内人群疏散的实验方案,通过不同条件下疏散过程的实况录像及视频检测,得到不同人数疏散时间的许多定量结果.提出了双出口房间吸引区间的概念,证明了较小出口吸引区间的边界总是一段圆弧,可以解释行人流出口处的圆形成拱现象.通过类比地铁候车厅内人群疏散过程,建立了双出口房间内疏散时间的二次函数模型,成功拟合不同条件下的实测数据.疏散人数较少时,疏散时间随着人数增加而线性增长;人数较多,在出口附近出现待行区域时,疏散时间则呈二次函数增长.与一些已知疏散时间数学模型相比,本文模型对出口宽度变化的反应更敏感.  相似文献   

12.
An alternative floor field (FF) model is proposed by incorporating the agitated behavior and elastic characteristics of pedestrians. The agitated behavior which is regarded as an important factor to pedestrian dynamics is depicted by introducing a parameter to revise the transition probability of pedestrians to move to the neighboring cells. To characterize elasticity of pedestrians, it is assumed that a cell can hold more than one pedestrians in crowd condition, while it can hold only one pedestrian in normal condition. In addition, a method to deal with conflicts is employed by considering the effects of agitated behavior and desired velocity. Numerical simulations are carried out to investigate pedestrian evacuation from a room. The results show, that as the value of agitated parameter increases, the evacuation time decreases to the minimum value and then increases gradually. Also, the faster-is-slower effect which is obtained by some other simulation models can be reproduced by the proposed model. Finally, the influence of exit width and the corresponding mechanism on evacuation process is investigated which is expected to be helpful to the exit design of public rooms.  相似文献   

13.
In this paper, a cellular automaton model considering game strategy update is proposed to study the pedestrian evacuation in a hall. Pedestrians are classified into two categories, i.e., cooperators and defectors, and they walk to an exit according to their own strategy change. The conflicts that two or three pedestrians try to occupy the same site at the same time are investigated in the Game theory model. Based on it, the relationship between the pedestrian flow rate and the evacuation time as well as the variation of cooperative proportion against evacuation time is investigated from the different initial cooperative proportions under the influence of noise. The critical value of the noise is found when there is a small number of defectors in the initial time. Moreover, the influences of the initial cooperative proportion and strength of noise on evacuation are discussed. The results show that the lower the initial cooperative proportion as well as the bigger the strength of noise, the longer the time it takes for evacuation.  相似文献   

14.
Yang-Hui Hu 《中国物理 B》2023,32(1):18901-018901
Building exit as a bottleneck structure is the last and the most congested stage in building evacuation. It is well known that obstacles at the exit affect the evacuation process, but few researchers pay attention to the effect of stationary pedestrians (the elderly with slow speed, the injured, and the static evacuation guide) as obstacles at the exit on the evacuation process. This paper explores the influence of the presence of a stationary pedestrian as an obstacle at the exit on the evacuation from experiments and simulations. We use a software, Pathfinder, based on the agent-based model to study the effect of ratios of exit width ($D$) to distance ($d$) between the static pedestrian and the exit, the asymmetric structure by shifting the static pedestrian upward, and types of obstacles on evacuation. Results show that the evacuation time of scenes with a static pedestrian is longer than that of scenes with an obstacle due to the unexpected hindering effect of the static pedestrian. Different ratios of $D/d$ have different effects on evacuation efficiency. Among the five $D/d$ ratios in this paper, the evacuation efficiency is the largest when $d$ is equal to $0.75D$, and the existence of the static pedestrian has a positive impact on evacuation in this condition. The influence of the asymmetric structure of the static pedestrian on evacuation efficiency is affected by $D/d$. This study can provide a theoretical basis for crowd management and evacuation plan near the exit of complex buildings and facilities.  相似文献   

15.
《Physica A》2006,363(2):492-500
Introducing the force concept of a social force model into the lattice gas (LG) model, a new LG-based discrete model entitled “multi-grid model” is composed. In the new model, finer lattice is used; thus each pedestrian occupies multiple grids instead of one, and the rules of interactions among pedestrians or pedestrians and constructions are built. The interaction forces including extrusion, repulsion and friction are considered as passive factors for evacuation. The strength of the drift, or the intensity of the pedestrians to move toward the exit rapidly, is considered an active factor. A simple situation is studied in which pedestrians try to evacuate from a large room with only one door. The influences of interaction forces and drift on evacuation time are analyzed. The mutual restriction relation of the two factors in the course of evacuating is found.  相似文献   

16.
Yan Xu  Hai-Jun Huang 《Physica A》2012,391(4):991-1000
A modified floor field model is proposed to simulate the pedestrian evacuation behavior in a room with multiple exits by considering the direction visual field. Direction visual field is used to describe the pedestrian’s prediction on the propagation of pedestrian flow along some directions. The proposed model outperforms most of the similar models developed so far in such scenario that pedestrians are initially distributed in a room’s specified zone. Simulation results show that the consideration of direction visual field can better reproduce the evacuation process and reduce evacuation time apparently. Sensitivity analyses of the model parameters are presented.  相似文献   

17.
An extended floor field model was proposed to investigate evacuation behaviors of pedestrians under the threat of artificial attack. In this model, pedestrian movement governed by the static and dynamic floor field, and the motion and assault of artificial attacker were involved simultaneously. Further, injuries with lower velocity and deaths of pedestrians caused by the attacker during evacuation were considered. And a new parameter kt was introduced. It is the sensitivity coefficient of attack threat floor field and could reflect quantitatively the extent of effect of attack threat on the decision-making of the individual. Moreover, effects of several key parameters such as the sensitivity coefficient, assault intensity and pedestrian density on evacuation dynamics were studied. Results show that pedestrian evacuation would display interesting phenomena transiting from rolling behavior to along-the-wall motion with aggravating extent of the impact of attackers on pedestrians, which refers kt in the model varying from 0.5 to 0.8. As assault intensity increases, more casualties would be caused and the available evacuation time would decrease, which means people have to flee the room in a shorter time period for survival. When the pedestrian density increases, more clogging at the exit would be generated and pedestrians would be more difficult to evacuate due to the limited capacity of egress and the reduction in the average speed of pedestrian flow caused by the injured. And the injured with limited motion capacity could hardly complete the evacuation owing to that they need more evacuation time and would retard the speed of the pedestrian flow.  相似文献   

18.
Xuan Liu  Jun Zhang 《Physica A》2009,388(13):2717-2726
In this study, experiments of single-file pedestrian movement were conducted and the movement parameters of pedestrians were extracted with a digital image processing method based on a mean-shift algorithm. The microscopic characteristics of pedestrian dynamics, including velocity, density, and lateral oscillation, as well as their interrelations, were obtained and analyzed. Firstly, we studied the lateral oscillation phenomena of pedestrian movement. The result indicates that the trajectory of pedestrians presents a wavy form and the amplitude of the oscillation remains about 5.5 cm when the pedestrians move with free walking velocity, which is the velocity when there is no obvious interaction between sequential pedestrians; but when the movement velocity decreases to 0.27 m/s, the amplitude of oscillation increases to 13 cm. With increasing density, the velocity decreases and the amplitude of oscillation presents a linear increase trend. The increasing oscillation amplitude widens the occupation area of a pedestrian with low velocity, so as to make the moving efficiency even worse. Secondly, we studied the frequency of the oscillation; the result indicates that the frequency remains at 2 Hz when pedestrians move with a free walking velocity, but it presents a similar linear decrease trend when the velocity changes to a lower value. The decrease of oscillation frequency is also a negative feedback to the moving efficiency. Thirdly, it is found that with the increase of crowd density, the time interval between two sequential pedestrians increases, though the space gap between them decreases. The quantitative relation between time interval and crowd density is obtained. The study in this paper provides fundamental data and a basic method for understanding pedestrian dynamics, developing and validating evacuation models. The results are also expected to be useful for evacuation design.  相似文献   

19.
Xiaoping Zheng  Yuan Cheng 《Physica A》2011,390(6):1042-1050
The game-theoretic approach is an essential tool in the research of conflicts of human behaviors. The aim of this study is to research crowd dynamic conflicts during evacuation processes. By combining a conflict game with a Cellular Automata model, the following factors such as rationality, herding effect and conflict cost are taken into the research on frequency of each strategy of evacuees, and evacuation time. Results from Monte Carlo simulations show that (i) in an emergency condition, rationality leads to “vying” behaviors and inhibited “polite” behavior; (ii) high herding causes a crowd of high rationality (especially in normal circumstances) to become more “vying” in behavior; (iii) the high-rationality crowd is shown to spend more evacuation time than a low-rationality crowd in emergency situations. This study provides a new perspective to understand conflicts in evacuation processes as well as the rationality of evacuees.  相似文献   

20.
杨晓霞  董海荣  姚秀明  孙绪彬 《中国物理 B》2016,25(4):48902-048902
With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of line 4 at the Beijing Xuanwumen subway station to study the emergency evacuation process under fire. Based on the established platform, effects of the fire dynamics, different initial pedestrian densities, and positions of fire on evacuation are investigated. According to simulation results, it is found that the fire increases the air temperature and the smoke density, and decreases pedestrians' visibility and walking velocity. Also, there is a critical initial density at the platform if achieving a safe evacuation within the required 6 minutes. Furthermore, different positions of fire set in this paper have little difference on crowd evacuation if the fire is not large enough. The suggestions provided in this paper are helpful for the subway operators to prevent major casualties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号