首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A generalization of the Onsager-Machlup theory from equilibrium to nonequilibrium steady states and its connection with recent fluctuation theorems are discussed for a dragged particle restricted by a harmonic potential in a heat reservoir. Using a functional integral approach, the probability functional for a path is expressed in terms of a Lagrangian function from which an entropy production rate and dissipation functions are introduced, and nonequilibrium thermodynamic relations like the energy conservation law and the second law of thermodynamics are derived. Using this Lagrangian function we establish two nonequilibrium detailed balance relations, which not only lead to a fluctuation theorem for work but also to one related to energy loss by friction. In addition, we carried out the functional integral for heat explicitly, leading to the extended fluctuation theorem for heat. We also present a simple argument for this extended fluctuation theorem in the long time limit. PACS numbers: 05.70.Ln, 05.40.-a, 05.10.Gg.  相似文献   

2.
Based on trajectory-dependent path probability formalism in state space, we derive generalized entropy production fluctuation relations for a quantum system in the presence of measurement and feedback. We have obtained these results for three different cases: (i) the system is evolving in isolation from its surroundings; (ii) the system being weakly coupled to a heat bath; and (iii) system in contact with reservoir using quantum Crooks fluctuation theorem. In Case (iii), we build on the treatment carried out by H T Quan and H Dong [arXiv/cond-mat:0812.4955], where a quantum trajectory has been defined as a sequence of alternating work and heat steps. The obtained entropy production fluctuation theorems (FTs) retain the same form as in the classical case. The inequality of second law of thermodynamics gets modified in the presence of information. These FTs are robust against intermediate measurements of any observable performed with respect to von Neumann projective measurements as well as weak or positive operator-valued measurements.  相似文献   

3.
We study the thermodynamic properties of a single particle occupying one of three available energy levels in a non-equilibrium regime. The particle is thermally coupled to a classical Maxwell-Boltzmann thermal reservoir and can jump among the available levels by exchanging energy with the heat bath. The bottom and middle energy levels are simultaneously raised at a given rate regardless of particle occupation, but keeping the energy gaps among the three levels fixed. We explicitly calculate the work, heat and entropy production rates, and the classical efficiency. We also consider the case of a Bose-Einstein thermal reservoir and provide explicit expressions for the non-equilibrium, steady-state probabilities.  相似文献   

4.
《Physica A》2005,358(1):49-57
The expressions for the nonequilibrium temperature derived from the fluctuation–dissipation theorem and from the differential of the informational nonequilibrium entropy for ideal gases under shear flow are compared. Both temperatures are different, in particular, the thermodynamic temperature derived from the entropy is lower than the local-equilibrium temperature, whereas the effective temperature defined from the fluctuation–dissipation expression is higher than the local-equilibrium temperature.  相似文献   

5.
We examine stochastic processes that are used to model nonequilibrium processes (e.g., pulling RNA or dragging colloids) and so deliberately violate detailed balance. We argue that by combining an information-theoretic measure of irreversibility with nonequilibrium work theorems, the thermal physics implied by abstract dynamics can be determined. This measure is bounded above by thermodynamic entropy production and so may quantify how well a stochastic dynamics models reality. We also use our findings to critique various modeling approaches and notions arising in steady-state thermodynamics.  相似文献   

6.
We investigate the total entropy production of a Brownian particle in a driven bistable system. This system exhibits the phenomenon of stochastic resonance. We show that in the time-periodic steady state, the probability density function for the total entropy production satisfies Seifert’s integral and detailed fluctuation theorems over finite time trajectories.  相似文献   

7.
We consider open quantum systems weakly coupled to a heat reservoir and driven by arbitrary time-dependent parameters. We derive exact microscopic expressions for the nonequilibrium entropy production and entropy production rate, valid arbitrarily far from equilibrium. By using the two-point energy measurement statistics for system and reservoir, we further obtain a quantum generalization of the integrated fluctuation theorem put forward by Seifert [Phys. Rev. Lett. 95, 040602 (2005)].  相似文献   

8.
The fluctuation theorems have remained one of the cornerstones in the study of systems that are driven far out of equilibrium, and they provide strong constraints on the fraction of trajectories that behave atypically in light of the second law. They have mainly been derived for a predetermined external drive applied to the system. However, to improve the efficiency of a process, one needs to incorporate protocols that are modified by receiving feedbacks about the recent state of the system, during its evolution. In such a case, the forms of the conventional fluctuation theorems get modified, the correction term involving terms that depend on the way the reverse/conjugate process is defined, namely, the rules of using feedback in order to generate the exact time-reversed/conjugate protocols. We show in this paper that this can be done in a large number of ways, and in each case we would get a different expression for the correction terms. This would in turn lead to several lower bounds on the mean work that must be performed on the system, or on the entropy changes. Here we analyze a form of the extended fluctuation theorems that involves the efficacy parameter, and find that this form retains a consistent physical meaning regardless of the design of feedback along the conjugate process, as opposed to the case of the previously mentioned form of the modified fluctuation theorems.  相似文献   

9.
Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry in the rate function of either the time-averaged entropy production or heat dissipation of a process. Such theorems have been proved for various general classes of continuous-time deterministic and stochastic processes, but always under the assumption that the forces driving the system are time independent, and often relying on the existence of a limiting ergodic distribution. In this paper we extend the asymptotic fluctuation theorem for the first time to inhomogeneous continuous-time processes without a stationary distribution, considering specifically a finite state Markov chain driven by periodic transition rates. We find that for both entropy production and heat dissipation, the usual Gallavotti-Cohen symmetry of the rate function is generalized to an analogous relation between the rate functions of the original process and its corresponding backward process, in which the trajectory and the driving protocol have been time-reversed. The effect is that spontaneous positive fluctuations in the long time average of each quantity in the forward process are exponentially more likely than spontaneous negative fluctuations in the backward process, and vice-versa, revealing that the distributions of fluctuations in universes in which time moves forward and backward are related. As an additional result, the asymptotic time-averaged entropy production is obtained as the integral of a periodic entropy production rate that generalizes the constant rate pertaining to homogeneous dynamics.  相似文献   

10.
This paper investigates microtubule thermodynamic properties dependence on gaussian thermal fluctuations using the Landau-Ginzburg-Wilson model. After solving the self-consistent equation for thermal fluctuations, we observed its increasing behavior as a function of temperature for different dimensionality 1, 2 and 3. Thermodynamic properties such as Shannon entropy, thermodynamic entropy, heat capacity and chemical potential have been computed. We found out that under thermal fluctuations, heat capacity and chemical potential exhibit negative values that can refer to the coexistence of first and second order phase transitions during MT dynamic instability. We also found that thermodynamic properties are highly affected at low temperatures. Moreover, thermodynamic entropy locally displays the conversion of the heat into work through the negentropy. We analyzed the behavior of the polarization according to fluctuations and found that thermal fluctuations modulate the polarization and depolarization of tubulin dimers which is very important in information processing in microtubules.  相似文献   

11.
Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled “housekeeping” forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.  相似文献   

12.
We give a proof of transient fluctuation relations for the entropy production (dissipation function) in nonequilibrium systems, which is valid for most time reversible dynamics. We then consider the conditions under which a transient fluctuation relation yields a steady state fluctuation relation for driven nonequilibrium systems whose transients relax, producing a unique nonequilibrium steady state. Although the necessary and sufficient conditions for the production of a unique nonequilibrium steady state are unknown, if such a steady state exists, the generation of the steady state fluctuation relation from the transient relation is shown to be very general. It is essentially a consequence of time reversibility and of a form of decay of correlations in the dissipation, which is needed also for, e.g., the existence of transport coefficients. Because of this generality the resulting steady state fluctuation relation has the same degree of robustness as do equilibrium thermodynamic equalities. The steady state fluctuation relation for the dissipation stands in contrast with the one for the phase space compression factor, whose convergence is problematic, for systems close to equilibrium. We examine some model dynamics that have been considered previously, and show how they are described in the context of this work.  相似文献   

13.
We investigate quantum heat transfer in a nonequilibrium qubit-phonon hybrid open system,dissipated by external bosonic thermal reservoirs.By applying coherent phonon states embedded in the dressed quantum master equation,we are capable of dealing with arbitrary qubit-phonon coupling strength.It is counterintuitively found that the effect of negative differential thermal conductance is absent at strong qubit-phonon hybridization,but becomes profound at weak qubit-phonon coupling regime.The underlying mechanism of decreasing heat flux by increasing the temperature bias relies on the unidirectional transitions from the up-spin displaced coherent phonon states to the down-spin counterparts,which seriously freezes the qubit and prevents the system from completing a thermodynamic cycle.Finally,the effects of perfect thermal rectification and giant heat amplification are unraveled,thanks to the effect of negative differential thermal conductance.These results of the nonequilibrium qubit-phonon open system would have potential implications in smart energy control and functional design of phononic hybrid quantum devices.  相似文献   

14.
The Markovian time evolution of the entropy production rate is studied as a measure of irreversibility generated in a bipartite quantum system consisting of two coupled bosonic modes immersed in a common thermal environment. The dynamics of the system is described in the framework of the formalism of the theory of open quantum systems based on completely positive quantum dynamical semigroups, for initial two-mode squeezed thermal states, squeezed vacuum states, thermal states and coherent states. We show that the rate of the entropy production of the initial state and nonequilibrium stationary state, and the time evolution of the rate of entropy production, strongly depend on the parameters of the initial Gaussian state (squeezing parameter and average thermal photon numbers), frequencies of modes, parameters characterising the thermal environment (temperature and dissipation coefficient), and the strength of coupling between the two modes. We also provide a comparison of the behaviour of entropy production rate and Rényi-2 mutual information present in the considered system.  相似文献   

15.
16.
The quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics. Entropy is one of the most fundamental physical concepts in thermodynamics.In this work, by solving the quantum Langevin equation, we study the von Neumann entropy of a particle undergoing quantum Brownian motion. We obtain the analytical expression of the time evolution of the Wigner function in terms of the initial Wigner function. The result is applied to the thermodynamic equilibrium initial state, which reproduces its classical counterpart in the high temperature limit. Based on these results, for those initial states having well-defined classical counterparts, we obtain the explicit expression of the quantum corrections to the entropy in the weak coupling limit. Moreover, we find that for the thermodynamic equilibrium initial state, all terms odd in h are exactly zero. Our results bring important insights to the understanding of entropy in open quantum systems.  相似文献   

17.
A formal analogy of fluctuating diffusivity to thermodynamics is discussed for messenger RNA molecules fluorescently fused to a protein in living cells. Regarding the average value of the fluctuating diffusivity of such RNA-protein particles as the analog of the internal energy, the analogs of the quantity of heat and work are identified. The Clausius-like inequality is shown to hold for the entropy associated with diffusivity fluctuations, which plays a role analogous to the thermodynamic entropy, and the analog of the quantity of heat. The change of the statistical fluctuation distribution is also examined from a geometric perspective. The present discussions may contribute to a deeper understanding of the fluctuating diffusivity in view of the laws of thermodynamics.  相似文献   

18.
Landauer’s principle provides a fundamental lower bound for energy dissipation occurring with information erasure in the quantum regime. While most studies have related the entropy reduction incorporated with the erasure to the lower bound (entropic bound), recent efforts have also provided another lower bound associated with the thermal fluctuation of the dissipated energy (thermodynamic bound). The coexistence of the two bounds has stimulated comparative studies of their properties; however, these studies were performed for systems where the time-evolution of diagonal (population) and off-diagonal (coherence) elements of the density matrix are decoupled. In this paper, we aimed to broaden the comparative study to include the influence of quantum coherence induced by the tilted system–reservoir interaction direction. By examining their dependence on the initial state of the information-bearing system, we find that the following properties of the bounds are generically held regardless of whether the influence of the coherence is present or not: the entropic bound serves as the tighter bound for a sufficiently mixed initial state, while the thermodynamic bound is tighter when the purity of the initial state is sufficiently high. The exception is the case where the system dynamics involve only phase relaxation; in this case, the two bounds coincide when the initial coherence is zero; otherwise, the thermodynamic bound serves the tighter bound. We also find the quantum information erasure inevitably accompanies constant energy dissipation caused by the creation of system–reservoir correlation, which may cause an additional source of energetic cost for the erasure.  相似文献   

19.
We extend Tooru-Cohen analysis for nonequilibrium steady state (NSS) of a Brownian particle to nonequilibrium oscillatory state (NOS) of Brownian particle by considering time dependent external drive protocol. We consider an unbounded charged Brownian particle in the presence of oscillating electric field and prove work fluctuation theorem, which is valid for any initial distribution and at all times. For harmonically bounded and constantly dragged Brownian particle considered by Tooru and Cohen, work fluctuation theorem is valid for any initial condition (also NSS), but only in large time limit. We use Onsager-Machlup Lagrangian with a constraint to obtain frequency dependent work distribution function, and describe entropy production rate and properties of dissipation functions for the present system using Onsager-Machlup functional.  相似文献   

20.
A statistical-mechanical formalism for nonequilibrium systems, namely the nonequilibrium statistical operator method, provides microscopic foundations for a generalized thermodynamics of dissipative processes. This formalism is based on a unifying variational approach that is considered to be encompassed in Jaynes' Predictive Statistical Mechanics and principle of maximization of the statistical-informational entropy. Within the framework of the statistical thermodynamics that follows from the method, we demonstrate the existence of generalized forms of the theorem of minimum (informational) entropy production, the criterion for evolution, and the thermodynamic (in)stability criterion. The formalism is not restricted to local equilibrium but, in principle, to general conditions (its complete domain of validity is not yet fully determined). A H-theorem associated to the formalism is presented in the form of an increase of the informational entropy along the evolution of the system. Some of the results are illustrated in an application to the study of a model for a photoexcited direct-gap semiconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号