首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luminescence intensity regulation of organic light-emitting transistor(OLED) device can be achieved effectively by the combination of graphene vertical field effect transistor(GVFET) and OLED. In this paper, we fabricate and characterize the graphene vertical field-effect transistor with gate dielectric of ion–gel film, confirming that its current switching ratio reaches up to 10~2. Because of the property of high light transmittance in ion–gel film, the OLED device prepared with graphene/PEDOT:PSS as composite anode exhibits good optical properties. We also prepare the graphene vertical organic light-emitting field effect transistor(GVOLEFET) by the combination of GVFET and graphene OLED, analyzing its electrical and optical properties, and confirming that the luminescence intensity can be significantly changed by regulating the gate voltage.  相似文献   

2.
Graphene's optical absorption coefficient increases linearly with the number of layers making it more effective in the construction of optical tuning graphene-based devices. Refractive index(RI) is one of the important optical parameters of the graphene for accurately describing its optical characteristics and further applications. In view of the RI research of the multilayer graphene is lacking and existing measurement methods are complicated. Optical power tuning RI of multilayer graphene is investigated using a simple measurement and no temperature cross sensitivity all optical fiber sensing structure.Optical power tuning RI characteristics of multilayer graphene are studied by tuning the introducing broad band light power from 0.57 mW to 22.7 m W. Different thickness graphene coating shows different tuning efficiency. At 4.86-μm thickness,a 3.433-nm Bragg wavelength shift is obtained with 156.2-pm/mW wavelength versus optical power tuning sensitivity corresponding to 3.25×10~3 RI change and 0.154 URI/W(URI, unit of RI) RI optical power tuning efficiency.  相似文献   

3.
Recent progress of research for graphene applications in electronic and optoelectronic devices is reviewed, and recent developments in circuits based on graphene devices are summarized. The bandgap-mobility tradeoff inevitably constrains the application of graphene for the conventional field-effect transistor (FET) devices in digital applications. However, this shortcoming has not dampened the enthusiasm of the research community toward graphene electronics. Aside from high mobility, graphene offers numerous other amazing electrical, optical, thermal, and mechanical properties that continually motivate innovations.  相似文献   

4.
In this Letter, we have shown that a giant Goos–H?nchen shift of a light beam reflected at terahertz frequencies can be achieved by using a composite structure, where monolayer graphene is coated on one-dimensional photonic crystals separated by a dielectric slab. This giant Goos–H?nchen shift originates from the enhancement of the electrical field, owing to the excitation of optical Tamm states at the interface between the graphene and onedimensional photonic crystal. It is shown that the Goos–H?nchen shift in this structure can be significantly enlarged negatively and can be switched from negative to positive due to the tunability of graphene's conductivity. Moreover, the Goos–H?nchen shift of the proposed structure is sensitive to the relaxation time of graphene and the thickness of the top layer, making this structure a good candidate for a dynamic tunable optical shift device in the terahertz regime.  相似文献   

5.
王永宾  徐云  张宇  迂修  宋国峰  陈良惠 《中国物理 B》2011,20(6):67302-067302
This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark current, resistance-area product, absorption coefficient and quantum efficiency characteristics are thoroughly examined. The superlattice is residually n-type and it becomes slightly p-type by varying beryllium-doping concentrations, which improves its electrical performances. The optical performances remain almost unaffected with relatively low p-doping levels and begin to deteriorate with increasing p-doping density. To make a compromise between the electrical and optical performances, the photodetector with a doping concentration of 3 × 1015 cm-3 in the active region is believed to have the best overall performances.  相似文献   

6.
伞晓娇  韩柏  赵景庚 《中国物理 B》2016,25(3):37305-037305
We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 , the two graphene layers in AA stacking can form strong chemical bonds.Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor(direct gap of 3.46 e V). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semifluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010]polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices.  相似文献   

7.
Development of graphene field effect transistors(GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□.The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 Ω/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication.The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process annealing on its electrical fabrication.  相似文献   

8.
The lattice Boltzmann method is employed to study the electrical transport properties of saturated porous media.Electrical current flow through the porous media is simulated and the relationship between resistivity index and water saturation is derived. It is found that this kind of relation is not a straight line as described by the Archie equation with the parameter n being a constant in a log-log scale. A new equation is thus developed to formulate this relation with n being a function of porosity and water saturation. The comparisons between the results by lattice Boltzmann and by the laboratory experiments on rock samples demonstrate that this numerical method can provide an alternative way for the expensive laboratory experiments to investigate the electrical transport properties of saturated porous media and can be used to explore micro mechanisms more conveniently.  相似文献   

9.
In this study, we propose and demonstrate a broadband polarization-independent terahertz modulator based on graphene/silicon hybrid structure through a combination of continuous wave optical illumination and electrical gating.Under a pump power of 400 mW and the voltages ranging from-1.8 V to 1.4 V, modulation depths in a range of-23%–62% are achieved in a frequency range from 0.25 THz to 0.65 THz. The modulator is also found to have a transition from unidirectional modulation to bidirectional modulation with the increase of pump power. Combining the Raman spectra and Schottky current–voltage characteristics of the device, it is found that the large amplitude modulation is ascribed to the electric-field controlled carrier concentration in silicon with assistance of the graphene electrode and Schottky junction.  相似文献   

10.
<正>The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties.Therefore,a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application.Up to now,the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments.To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly.In this paper,a novel method,based on the combination model of digital image processing and the finite element method,is proposed to rapidly model the optical properties of the actual photonic crystal fibre.Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled.It is confirmed from numerical results that the proposed method is simple,rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment.  相似文献   

11.
Optical and electrical properties of diamond-like carbon (DLC) films deposited by pulsed laser ablation of graphite target at different substrate temperatures are reported. By varying the deposition temperature from 400 to 25℃, the film optical transparency and electrical resistivity increase severely. Most importantly, the transparency and resistivity properties of the DLC films can be tailored to approaching diamond by adjusting the deposition temperature, which is critical to many applications. DLC films deposited at low temperatures show excellent optical transmittance and high resistivity. Over the same temperature regime an increase of the spa bonded C content is observed using visible Raman spectroscopy, which is responsible for the enhanced transparency and resistivity properties.  相似文献   

12.
Design of single-material guided-mode resonance filter   总被引:1,自引:0,他引:1  
In this letter, a guided-mode resonance (GMR) filter with the same material for both the grating layer and the waveguide layer is designed, and its optical properties are investigated. The GMR filter owns almost 100% reflection at the resonance wavelength of 800 nm with the full-width at half-maximum (FWHM) of 20 nm, and its sideband reflection from 700 to 1000 nm is less than 5%. As the resonance wavelength is influenced by more than one parameter during the fabrication process, GMR filter with the same resonance wavelength can be obtained by adjusting other parameters or even one parameter to deviate from the design value.  相似文献   

13.
Efficiently tuning the output intensity of an optical device is of vital importance for the establishment of optical interconnects and networks. Thermo-optical modulation is an easily implemented and convenient approach and has been widely employed in photonic devices. In this paper, we proposed a novel thermo-optical modulator based on a microfiber knot resonator(MKR) and graphene heater. Upon applying voltage to graphene, the resonant property of the MKR could be thermally tuned with a maximum phase shift of 2.1π. Intensity modulation shows a fast optical response time thanks to the high thermal conductivity of graphene and the thin microfiber diameter of the MKR.  相似文献   

14.
A tunable dual-band terahertz absorber is designed and investigated. The unit cell of the proposed absorber consists of a graphene monolayer on a guided-mode resonant filter. The graphene absorber presents > 40% absorption at two resonance frequencies, which is attributed to the guided mode resonances with different mode numbers. The electric field intensity distribution is analyzed to disclose the physical mechanism of such a dual-band absorption effect. Furthermore,the influence of optical properties of graphene, including Fermi level and relaxation time, on the absorption spectra are investigated. Finally, the influence of geometric parameters on the absorption spectrum is studied, which will provide useful guidance for the fabrication of this absorber. We believe that the results may be useful for developing the next-generation graphene-based optoelectronic devices.  相似文献   

15.
Study of Tyvek reflectivity in water   总被引:1,自引:0,他引:1  
Tyvek is widely used as the inner lining material of water Cherenkov detectors. Therefore, information about its optical properties plays an important role in the simulation and reconstruction of particles passing through water Cherenkov detectors. In this paper, a water tank experiment is performed to study the Tyvek reflectivity in water. The so-called UNIFIED model, which is an optical model of surface reflection in Geant4, is adopted to describe the Tyvek reflectivity. Two key optical parameters are obtained from a comparison between the measured data and a Monte Carlo simulation.  相似文献   

16.
In a TPC, ion feedback from the readout detector can cause a space-charge effect and distort the electrical field in the drift region. Gating is one of the effective methods to solve this problem, which can block ions at the expense of losing a certain amount of primary electrons. Compared with the traditional design with a wire structure, gating based on GEM foil is more attractive because of its simplicity. In this paper, the factors in uencing the electron transmission e ciency are studied with simulations and experiments. After optimizing all these parameters, an electron transmission e ciency over 80% is obtained.  相似文献   

17.
Most of the current graphene plasmonic researches are based on the substrates with isotropic dielectric constant such as silicon.In this work,we investigate optical properties of graphene nanoribbon arrays placed on a uniaxially anisotropic substrate,where the anisotropy provides an additional freedom to tune the behaviors of graphene plasmons,and its effect can be described by a simple effective formula.In practice,the substrates of semi-infinite and finite thickness are discussed by using both the formula and full wave simulations.Particularly,the dielectric constants ε|| and ε⊥ approaching zero are intensively studied,which show different impacts on the transverse magnetic(TM) surface modes.In reality,the hexagonal boron nitride(hBN) can be chosen as the anisotropic substrate,which is also a hyperbolic material in nature.  相似文献   

18.
Since their advent in the 1980s,optical tweezers have attracted more and more attention due to their unique non-contact and non-invasion characteristics and their wide applications in physics,biology,chemistry,medical science and nanoscience.In this paper,we introduce the basic principle,the history and typical applications of optical tweezers and review our recent experimental works on the development and application of optical tweezers technique.We will discuss in detail several technological issues,including high precision displacement and force measurement in single-trap and dual-trap optical tweezers,multi-trap optical tweezers with each trap independently and freely controlled by means of space light modulator,and incorporation of cylindrical vector optical beams to build diversified optical tweezers beyond the conventional Gaussian-beam optical tweezers.We will address the application of these optical tweezers techniques to study biophysical problems such as mechanical deformation of cell membrane and binding energy between plant microtubule and microtubule associated proteins.Finally we present application of the optical tweezers technique for trapping,transporting,and patterning of metallic nanoparticles,which can be harnessed to manipulate surface plasmon resonance properties of these nanoparticles.  相似文献   

19.
储开龙  王孜博  周娇娇  江华 《中国物理 B》2017,26(6):67202-067202
The transport study of graphene based junctions has become one of the focuses in graphene research. There are two stacking configurations for monolayer–bilayer–monolayer graphene planar junctions. One is the two monolayer graphene contacting the same side of the bilayer graphene, and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene. In this paper, according to the Landauer–Büttiker formula, we study the transport properties of these two configurations. The influences of the local gate potential in each part, the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained. We find the conductances of the two configurations can be manipulated by all of these effects. Especially, one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene. The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.  相似文献   

20.
Deep sub-wavelength metamaterials are the key to the further development of practical metamaterials with small volumes and broadband properties. We propose to reduce the electrical sizes of metamaterials down to more sub-wavelength scales by lowering the plasma frequencies of metallic wires. The theoretical model is firstly established by analyzing the plasma frequency of continuous thin wires. By introducing more inductance elements, the effective electron mass can be enhanced drastically, leading to significantly lowered plasma frequencies. Based on this theory, we demonstrate that both the electric and the magnetic plasma frequencies of metamaterials can be lowered significantly and thus the electrical sizes of metamaterials can be reduced to more sub-wavelength scales. This provides an efficient route to deep sub-wavelength metamaterials and will give rigorous impetus for the further development of practical metamaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号