首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most Gram-negative bacteria are susceptible to polymyxin B (PxB), and development of resistance to this cationic lipopeptide is very rare. PxB mechanism of action involves interaction with both the outer membrane (OM) and the inner membrane (IM) of bacteria. For the design of new antibiotics based on the structure of PxB and with improved therapeutic indexes, it is essential to establish the key features of PxB that are important for activity. We have used an approach based on mimicking the outer layers of the OM and the IM of Gram-negative bacteria using monolayers of lipopolysaccharide (LPS) or anionic 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG), respectively, and using a combination of penetration assay, analysis of pressure/area curves, and Brewster angle microscopy to monitor surface morphology changes. Synthetic analogue sp-B maintains the basic structural characteristics of the natural compound and interacts with the OM and the IM in a similar way. Analogue sp-C, with a mutation of the sequence [d-Phe6-Leu7] into [d-Phe6-Dab7], shows that this hydrophobic domain is involved in LPS binding. The significant role of the positive charges is demonstrated with sp-Dap analogue, where l-alpha,gamma-diaminobutyric acid residues Dab1 and Dab8 are replaced by l-alpha,gamma-diaminopropionic acid (Dap), resulting in lower degrees of insertion in both LPS and PG monolayers. The importance of the N-terminal acyl chain is demonstrated with polymyxin B nonapeptide (PxB-np). PxB-np shows lower affinity for LPS compared to PxB, sp-B, or sp-C, but it does not insert into PG monolayers, although it binds superficially to the anionic film. Since PxB microbial killing appears to be mediated by osmotic instability due to OM-IM phospholipid exchange, the ability of the different peptides to induce membrane-membrane lipid exchange has been studied by use of phospholipid unilamellar vesicles. Results indicate that cationic amphipathicity determines peptide activity.  相似文献   

2.
Improved strategies for the chemical conversion of natural polymyxin B and colistin to their N-terminal analogs are reported. First, the protection of the side chains of five L-alpha,gamma-diaminobutyric acid (Dab) residues in natural polymyxin B and colistin was achieved with trichloroethoxycarbonyl (Troc), then the resulting pentakis(N gamma-Troc)-polymyxin B and pentakis(N gamma)Troc)-colistin were treated with trifluoroacetic acid (TFA) : methanesulfonic acid (MSA) : dimethylformamide (DMF) : H2O (10 : 30 : 55 : 5) at 40 degrees C in order to remove N alpha-alkanoyl-Dab(Troc)-OH selectively. The new key compounds, tetrakis(N gamma-Troc)-polymyxin B (2-10) and tetrakis(N gamma-Troc)-colistin (2-10), were obtained in 19% and 15% yields, respectively, which is higher than previous reports using trifluoroacetyl (Tfa) for tetrakis(N gamma-Tfa)-polymyxin B (2-10) and tetrakis(N gamma-Tfa)-colistin (2-10), respectively. Acylation of tetrakis(N gamma-Troc)-polymyxin B (2-10) and tetrakis(N gamma-Troc)-colistin (2-10) with various hydrophobic acids bearing aliphatic or aromatic ring structures, followed by the deprotection of Troc by Zn in AcOH, produced polymyxin B (2-10) and colistin (2-10) analogs which were used for structure-activity relationship studies. It was found that cyclohexylbutanoyl-, 4-biphenylacetyl-, and 1-adamantaneacetyl-polymyxin B (2-10) showed potent antimicrobial activity equal to that of polymyxin B against three Gram-negative bacterial strains. The lipopolysacharide (LPS) binding activity of cyclohexylbutanoyl-, 4-biphenylacetyl-, and cyclododecanecarbonyl-polymyxin B (2-10) increased greatly in comparison with that of polymyxin B (2-10). The various N alpha-acylated polymyxin B (2-10) analogs showed slightly higher antimicrobial and LPS binding activities than the corresponding N alpha-acylated colistin (2-10) analogs.  相似文献   

3.
The synthesis and low temperature crystal structures of [Ag(quinoxaline)]n(NO3)n, 1, [Ag(2,5-dimethylpyrazine)(NO3)]n, 2 and [Ag4(3-aminopyridine)4(NO3)4]n 3 are presented. The quinoxaline compound forms a 1D coordination polymer with the characteristic linear 2-coordination figure of silver(I), the N-Ag-N angle being 164.2(1) degrees, and only weak silver-nitrate interactions. In addition there is an interaction giving pairs of parallel chains as the main structural theme. The 2,5-dimethylpyrazine compound has approximately trigonal-planar coordination, also binding one nitrate at the relatively short Ag-O distances 2.444(3) angstroms and 2.484(3) angstroms, respectively, for the two crystallographically different silver atoms. This also results in a 1D coordination polymer that, despite the large differences in the Ag(I) coordination environment, is isostructural with 1. [Ag4(3-aminopyridine)4(NO3)4]n 3 forms a 2D coordination polymer by bridging nitrate ions. The antimicrobial activity of 1-3, and also of [Ag3(2-aminopyridine)4](NO3)3, 4 was screened for 13 different pathogens and substantial activity was shown for 1 against Escherichia coli and Pseudomonas aeruginosa (MIC 4 microg cm(-3)) and somewhat lower activity was registered against Sarcina lutea and Salmonella typhi for 1, Bordetella bronchiseptica for 2, Salmonella typhi and Pseudomonas aeruginosa for 3, and Escherichia coli and Shigella sonnie for 3 (MIC 8 microg cm(-3)). Only low activity was shown against the yeast Candida albicans for 1, 2 and 4 whereas no activity against this pathogen was registered for 3.  相似文献   

4.
We report here the characterisation of eight newly synthesized thioureides of 2-(4-chlorophenoxymethyl)-benzoic acid and the evaluation of the in vitro antimicrobial activity of the new compounds against Gram-positive [Listeria monocytogenes,Staphylococcus aureus, Bacillus subtilis], Gram-negative [Psedomonas aeruginosa,Escherichia coli, Salmonella enteritidis], as well as Candida spp., using both reference and clinical multidrug resistant strains to establish the minimal inhibitory concentration (MIC)values. Our results showed that the tested compounds exhibited specific antimicrobial activities, both concerning the spectrum of antimicrobial activity and the corresponding MIC values, which ranged widely between 1024 and 32 mug/mL, depending on the nature and position of the substituents on the benzene ring. The most active compounds were N-[2-(4-chlorophenoxymethyl)-benzoyl]-N'-(2,6-dichlorophenyl)-thiourea (5 g) and N-[2-(4-chlorophenoxymethyl)-benzoyl]-N'-(4-bromophenyl)-thiourea (5h), which showed a broad spectrum of antimicrobial activity against enterobacterial strains (E. coli and S. enteritidis),P. aeruginosa, S. aureus and Candida spp. All the tested compounds except 5f were highly active against S. aureus (MIC=32 mug/mL), suggesting their possible use in the treatment of MRSA infections. Four of compounds also exhibited antifungal activity (MIC =256-32 microg/mL) against C. albicans, but L. monocytogenes as well as B. subtilis were resistant to all tested compounds. Our studies thus demonstrated that among other biological activities,the thioureides of 2-(4-chlorophenoxymethyl)-benzoic acid also exhibit selective and effective antimicrobial properties that could lead to the selection and use of these compounds as efficient antimicrobial agents, especially for the treatment of multidrug resistant infections.  相似文献   

5.
Despite the fact that peptide conjugates with a pendant ferrocenyl (Fc) have been widely investigated, bis-ferrocenyl end-capped peptides are rarely synthetized. In this paper, in addition to the full characterization of the Fc-CO-[L-Dap(Boc)]n-NH-Fc series, we report a comparison of the three series of bis-ferrocenyl homopeptides synthesized to date, to gain insights into the influence of α-amino isobutyric (Aib), 2,3-diamino propionic (Dap) and Cα,β-didehydroalanine (ΔAla) amino acids on the peptide secondary structure and on the ferrocene redox properties. The results obtained by 2D NMR analysis and X-ray crystal structures, and further supported by electrochemical data, evidence different behaviors depending on the nature of the amino acid; that is, the formation of 310-helices or fully extended (2.05-helix) structures. In these foldamers, the orientation of the carbonyl groups in the peptide helix yields a macrodipole with the positive pole on the N-terminal amino acid and the negative pole on the C-terminal amino acid, so that oxidation of the Fc moieties takes place more or less easily depending on the orientation of the macrodipole moment as the peptide chain grows. Conversely, the fully extended conformation adopted by ΔAla flat peptides neither generates a macrodipole nor affects Fc oxidation. The utilization as electrochemical and optical (Circular Dichroism) probes of the two terminal Fc groups, bound to the same peptide chain, makes it possible to study the end-to-end effects of the positive charges produced by single and double oxidations, and to evidence the presence “exciton-coupled” CD among the two intramolecularly interacting Fc groups of the L-Dap(Boc) series.  相似文献   

6.
Chromophore-modified bacteriorhodopsin (bR) analogs are prepared, to study the nature of chromophore-protein interaction as well as to develop new bR analogs that can find applications as photoactive element in molecular electronic devices. This article describes the preparation and characterization of hitherto unknown bR analogs based on diphenylpolyene chromophores. Diphenylpolyene compounds, namely, 4-[(E)-2-phenylvinyl]benzaldehyde (1), 3-methyl-5-[4-[(E)-2-phenylvinyl]phenyl]penta-2E,4E-dienal (2), 4-[4-phenylbuta-1E,3E-dienyl]benzaldehyde (3) and 3-methyl-5-[4-[4-phenylbuta-lE,3E-dienyl]phenyl]penta-2E,4E-dienal (4), have been synthesized, and their interaction with bacterioopsin (bOP) has been studied. Whereas aldehydes 2 and 4 interact with bOP and yield bR analogs bR-2 and bR-4, aldehydes 1 and 3 do not yield any pigment. Analogs bR-2 and bR-4 have been characterized for their opsin shift, competitive binding, photochemical properties and fluorescence spectral behavior.  相似文献   

7.
To determine whether the addition of a methylene unit in the side chain of the Asp or Arg residue in alpha-human atrial natriuretic peptide (alpha-hANP) influences its biological activity, analogs of alpha-hANP, [Glu13]-alpha-hANP (7-28) (1), [Aad13]-alpha-hANP (7-28) (2), and [Harn]-alpha-hANP(7-28) (where n is any possible combination of 11, 14 and 27) (3-9), where the original Asp or Arg residue was replaced by a homo-amino acid, were synthesized by the solid-phase synthesis method. All the analogs were evaluated for their receptor binding, cyclic guanosine monophosphate (cGMP) accumulation activity in rat vascular smooth muscle cells (VSMC), and for vasorelaxant activity employing rat aorta. 1 and 2 were 0.9 and 0.03 times as potent as alpha-hANP (7-28), respectively, in binding. Har-containing analogs (3-9) were as potent as alpha-hANP (7-28) in binding. Among the Har-containing analogs, [Har11,14]-alpha-hANP (7-28) (6) and [Har11,27]-alpha-hANP (7-28) (7) were remarkably vasorelaxant active, being 4.2 and 5.3 times potent than alpha-hANP (7-28), respectively, in spite of relatively lower cGMP accumulation activity in the case of 7. The roles of the chargeable amino acid residues in biological activity are discussed.  相似文献   

8.
By using atomic force microscopy (AFM), we clearly show that the antimicrobial peptide affects the molecular interaction between lipopolysaccharide (LPS) and immune proteins (lipopolysaccharide binding protein [LBP] and CD14). To reconstruct an in vivo interaction, LBP and LPS (the Ra, Rc, and Re forms from Salmonella minnesota, with varying lengths of the saccharide region) were immobilized onto the AFM tip using a chemical spacer linker. We examined the interaction between the proteins on the tip and model lipid bilayer biomembranes including CD14, in both the presence and absence of the antimicrobial peptide, polymyxin B (PMB). When LPS was present, the binding force between the LBP-LPS complex and CD14 increased dramatically, compared to that seen between LBP and CD14 alone. Longer LPS saccharide regions resulted in higher binding forces. The data suggest that LPS may have an important influence on the binding of LBP to CD14 and that the saccharide region of LPS is influential in this regard. It was also found that the antimicrobial peptide PMB, at or above a particular concentration, specifically inhibited the binding between LBP-LPS and CD14.  相似文献   

9.
We have investigated the reactions of silver nitrate and 3-(aryl)-2-sulfanylpropenoic acids [H(2)xspa, x: p = 3-phenyl-, f = 3-(2-furyl)-, t = 3-(2-thienyl)-, py = 3-(2-pyridyl)-] and 2-cyclopentylidene-2-sulfanylacetic acid (H(2)L) in 1 : 1 and 2 : 1 molar ratios. The 1 : 1 molar ratio gave compounds of type [Ag(HL)]; reaction of these compounds with diisopropylamine and NaOH gave [HQ][Ag(L)] (HQ = diisopropylammonium) and Na[Ag(L)] x H(2)O, respectively. These compounds, as well as those of type [Ag(2)(L)] obtained with the 1 : 2 molar ratio, were isolated and characterized by IR and NMR ((1)H and (13)C) spectroscopy. (109)Ag NMR spectroscopy and ESI-MS spectrometry were also used in some cases. The crystal structures of [HQ][Ag(pspa)] (11), in which the presence of structural isomers was detected, and [HQ][Ag(cpa)] (15) were determined by X-ray diffractometry. The antimicrobial activity of the complexes against E. coli, S. aureus, B. subtilis, P. aeruginosa/Resistant P. aeruginosa, and C. albicans was tested.  相似文献   

10.
The chemistry of phosphoserine [Ser(P)] containing peptides and polypeptides was extensively investigated to explore a new biomineralization material science. The selective cleavage of the O,O′‐diphenyl phospho‐protecting groups of Ser(PO3Ph2) was examined using hydrogenolysis catalysts. Among the catalysts examined, only PtO2 in 50% trifluoroacetic acid (TFA)/AcOH successfully cleaved the protecting group of Ser(PO3Ph2) to give Ser(P). Based on these characteristic new findings, Ser(P)‐containing dipeptides such as Gly‐Ser(P), Ala‐Ser(P), Ser‐Ser(P), Asp‐Ser(P), Glu‐Ser(P), and Lys‐Ser(P), and tetrapeptide [Asp‐Ser(P)]2 were synthesized by a facile method. When we used the Ser(PO3Ph2) residues at the C terminals, the amino functional groups of amino acids and peptides can be coupled by the unsymmetric mixed anhydride using isobutyl chloroformate but cannot be by the symmetric anhydride method using dicyclohexylcarbodiimide. Neither unsymmetric mixed anhydride nor symmetric anhydride can be coupled with p‐nitrophenol at their C terminals. High‐molecular‐weight sequential polypeptides containing Ser(P) such as poly[Ser(P)‐Xaa] (Xaa: Gly, Ala, Ser, Lys, Asp, Glu) and poly[Gly‐Ser(P)‐Gly] were first synthesized by the polycondensation of the di‐ and tripeptide p‐nitrophenyl active esters, followed by the quantitative elimination of the diphenyl protecting groups by PtO2 in TFA/AcOH. The new strategy to synthesize Ser(P)‐containing peptides and model proteins may help the development of hybrid formulations of marine and biomimetic protein minerals.

  相似文献   


11.
C-terminal rearrangement ions [b(n-1) + H2O] (where n refers to the total number of residues of peptides) are frequently observed for peptides which contain basic amino acid(s), especially arginine, at or near their N termini in low- and high-energy collision-induced dissociation or post-source decay (PSD) spectra. Here we report a novel rearrangement, associated with PSD for serine- or threonine-containing peptides that are susceptible to C-terminal rearrangement. Based on PSD analyses of serine- or threonine-containing bradykinin and its analogs, which have been ethyl-esterified or 18O labeled at their C termini, the [b(k) + H2O] (where k denotes the position adjacent to the left of the Ser/Thr residue) ion is generally thought to be formed by the transfer of the hydroxyl moiety of a serine or threonine residue to the carbonyl group of the residue to its left accompanied by the loss of the remaining C-terminal portion of the peptide. When the Ser/Thr is at or near the C terminus, the present [b(k) + H2O] ion could be formed via two pathways, i.e., the Ser/Thr-related rearrangement and the conventional C-terminal rearrangement, which has been clearly verified by 18O labeling at the C terminus. In addition, the ions which are formally designated as [y(m)b(l) + H2O], where y(m)b(l) denotes a b-type internal ion, are also briefly described.  相似文献   

12.
This paper focuses on surface characterization of P[ AB] copolyoxetane soft block polyurethanes having either fluorous (3FOx, -CH2OCH 2CF3) or PEG-like (ME2Ox, -CH2(OCH2CH2) 2OCH3), A side chains and alkylammonium, B side chains. Physical surface characterization data were analyzed in light of the previously observed order of antimicrobial effectiveness for a set of four surface modifiers. Ample physical evidence for surface concentration of fluorous 2 wt % P[ AB]-polyurethane modifiers was obtained from XPS, contact angles, ATR-IR spectroscopy, and TM-AFM. In TM-AFM phase imaging, the most effective biocidal surface modifier, 2 wt % HMDI-BD(30)/P[(3FOx)(C12)-0.89:0.11]-PU, showed a nanoscale phase-separated structure consisting of 200 nm domains with background features about 10 times smaller. Despite similar surface characterization data, the 2 wt % fluorous C6 analog ranked third in contact biocidal effectiveness. Physical evidence for surface concentration of 2 wt % P[(ME2Ox)(C12)-0.86:0.14]-PU was modest, considering that antimicrobial effectiveness was second only to 2 wt % HMDI-BD(30)/P[(3FOx)(C12)-0.89:0.11]-PU. In this set of surface modifiers, nanoscale morphology is largely driven by the fluorous component, whereas antimicrobial effectiveness is more strongly influenced by alkylammonium chain length. The effect of alkylammonium side chain length on surface concentration and antimicrobial behavior is more pronounced for ME2Ox polyurethanes compared to the 3FOx analogs.  相似文献   

13.
The total synthesis and evaluation of three key ramoplanin aglycon analogues are detailed. The first (5a) represents replacement of the labile depsipeptide ester with a stable amide (HAsn2 --> Dap2) with removal of the HAsn pendant carboxamide, and it was found to be slightly more potent than the natural aglycon in antimicrobial assays providing a new lead structure with an improved profile and a more stable and accessible macrocyclic template on which to conduct structure-function studies. In contrast, a second amide analogue 5b which contains a single additional methylene relative to 5a (HAsn2 --> Dab2) was found to be inactive in antimicrobial assays (>100-fold loss in activity). The third key analogue 5c in which the Asn1 lipid side chain was replaced with an acetyl group revealed that it contributes significantly to the antimicrobial activity (16-fold) of the ramoplanins, but is not essential.  相似文献   

14.
Endothelin-1 analogs replaced by various amino acids at position 21, namely [X21]-ET-1, were synthesized, and their agonistic vasoconstrictor activity on rat thoracic aortic strips and receptor binding activity on rat brain membrane fraction were examined to elucidate their structure-activity relationship. The vasoconstrictor activities of [Tyr21]- and [Phe21]-ET-1 were one order of magnitude smaller than that of ET-1, and those of [His21]-, [Gly21]-, [Ser21]-, [Ala21]- and [Lys21]-ET-1 were more than two orders of magnitude smaller than that of ET-1. On the other hand, the replacements by Ile, Glu, Gln and Pro resulted in distinguished losses of the vasoconstrictor activities. In addition, preincubation with these analogs did not blunt ET-1-induced vasoconstriction and showed no antagonistic activity. The binding inhibitory activities of these analogs against 125I-ET-1 were approximately conformable to the vasoconstrictor activities with only a slight exception. These findings demonstrate that the phenyl group at position 21 is important for both the vasoconstrictor activity and the receptor binding activity.  相似文献   

15.
The [D-Ala2]deltorphin 1 sequence in which the aspartic acid residue is replaced by the N gamma-OCH3-alpha, gamma-diamino (S) butanoyl residue was synthesized using the Fmoc-chemistry-based solid phase procedure. The resulting deltorphin analogue was chemoselectively glucosylated by reaction with unprotected D-glucose (Glc). The Asn4-, (2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-galactopyranosyl)-Asn4- and the (2-acetamido-2-deoxy-D-galactopyranosyl)-Asn4-deltorphin I were also prepared for comparison. The affinity of the new compounds for the delta-opioid receptor was expressed by the inhibition constant (Ki) of the binding of the delta-receptor selective ligand [3H]naltrindole (NTI) to rat brain membrane preparations. The in vitro biological activity of the synthetic peptides was compared with that of the mu-opioid receptor agonist dermorphin in guinea pig ileum (GPI) preparations and with that of the delta-opioid receptor agonist deltorphin I in mouse vas deferens (MVD) preparations. The substitution of Asp4 with Asn failed to affect drastically the Ki and IC50 values for delta-sites, suggesting that an electrostatic interaction does not play an essential role in the binding to delta-opioid sites. The steric hindrance of the side chain of the residue in position 4 affects binding to delta-sites. The increase of the Ki value is smaller when the sugar-peptide linkage involves the gamma-nitrogen of the Dab residue in comparison with the Asn amide side chain.  相似文献   

16.
One dinuclear complex [Cu2Cl2(HEMDP) 2]·THF 1(H2EMDP = 2-[(2-hydroxyethylimino)-methyl]-4,6-diiodo-phenol,THF = tetrahydrofuran) has been designed and synthesized by H2EMDP with CuCl2·2H2O in THF solvent. Complex 1 was characterized by UV,IR,ESI-MS,and elemental analyses. 1 was characterized by X-ray crystallography. The crystal belongs to the monoclinic system,space group C2/c with a = 27.886(3) ,b = 8.6890(12) ,c = 26.698(2) ,β = 105.521(2) o,V = 6233.1(12) 3,Z = 8,Mr = 1102.01,μ = 5.533 mm-1,Dc = 2.349 Mg/m3,F(000) = 4112,the final R = 0.0486 and wR = 0.1175(I > 2σ(I)) . In addition,further investigation revealed that the central copper(Ⅱ) atom in the complex is five-coordinated by one nitrogen atom and two oxygen atoms from H2EMDP and two chlorine atoms from chlorid. The 3,5-diiodosalicylaldehyde Schiff base acts as a tridentate ligand. H2EMDP and 1 were assayed for antibacterial(B. subtilis,S. aureus,S. faecalis,P. aeruginosa,E. coli and E. cloacae) activities by MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl trtrazolium bromide) method. 1 showed the most favorable antimicrobial activity with MICs of 3.125,6.25,6.25,12.5,3.125 and 6.25 μg/mL against B. subtilis,S. aureus,S. faecalis,P. aeruginosa,E. coli and E.cloacae,respectively.  相似文献   

17.
The minimum inhibitory concentrations (MIC) of a series of synthetic inert polypyridylruthenium(II) complexes against four strains of bacteria--Gram positive Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), and Gram negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa)--have been determined. The results demonstrate that for the dinuclear ruthenium(II) complexes ΔΔ/ΛΛ-[{Ru(phen)(2)}(2){μ-bb(n)}](4+) {where phen = 1,10-phenanthroline; bb(n) = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane (n = 2, 5, 7, 10, 12 or 16)} the complexes linked by the bb(12), bb(14) and bb(16) ligands are highly active, with MIC values of 1 μg mL(-1) against both S. aureus and MRSA, and 2-4 and 8-16 μg mL(-1) against E. coli and P. aeruginosa, respectively. The mononuclear complex [Ru(Me(4)phen)(3)](2+) showed equal activity (on a mole basis) against S. aureus compared with the Rubb(12), Rubb(14) and Rubb(16), but was considerably less active against MRSA and the two Gram negative bacteria. For the dinuclear Rubb(n) family of complexes, the antimicrobial activity was related to the octanol-water partition coefficient (logP). However, the highly lipophilic mononuclear complex Δ-[Ru(phen)(2)(bb(16))](2+) was significantly less active than Rubb(16), highlighting the importance of the dinuclear structure. Preliminary toxicity assays were also carried out for the ΔΔ isomers of Rubb(7), Rubb(10), Rubb(12) and Rubb(16) against two human cells lines, fresh red blood cells and THP-1 cells. The results showed that the dinuclear ruthenium complexes are significantly less toxic to human cells compared to bacterial cells, with the HC(50) and IC(50) values 100-fold higher than the MIC for the complex that showed the best potential--ΔΔ-Rubb(12).  相似文献   

18.
In efforts that define the importance of each residue and that identify key regions of the molecule, an alanine scan of the ramoplanin A2 aglycon, a potent antibiotic that inhibits bacterial cell wall biosynthesis, is detailed. As a consequence of both its increased stability (lactam vs lactone) and its "relative" ease of synthesis, the alanine scan was conducted on [Dap2]ramoplanin A2 aglycon, which possesses antimicrobial activity equal to or slightly more potent than that of ramoplanin A2 or its aglycon. Thus, 14 key analogues of the ramoplanin A2 aglycon, representing a scan of residues 3-13, 15, and 17, were prepared enlisting a convergent solution-phase total synthesis that consolidated the effort to a manageable level. The antimicrobial activity of the resulting library of analogues provides insight into the importance and potential role of each residue of this complex glycopeptide antibiotic.  相似文献   

19.
A HPLC method was developed to quantify rhamnolipid species in a bacterial biosurfactant mixture. The biosurfactant mixtures containing mainly 3-[3'-(L-rhamnopyranosyl-oxy)decanoyloxy]decanoic acid (RhC10C10), 3-[3'-(2'-O-alpha-L-rhamnopyranosyl-oxy)decanoyloxy]decanoic acid (Rh2C10C10), 3-[3'-(2'-O-alpha-L-rhamnopyranosyl-oxy)decanoyloxy]dodecanoic acid (Rh2C10C12), and a dehydrogenated variety of the latter, 3-[3'-(2'-O-alpha-L-rhamnopyranosyl-oxy)decanoyloxy]dodecenoic acid (Rh2C10C12-H2), were isolated from Pseudomonas aeruginosa UG2 cultures grown on corn oil as sole carbon. The rhamnolipid species were identified and quantified after their derivatization to the corresponding phenacyl esters. To confirm the reliability of the HPLC method, the biosurfactant mixtures and the HPLC isolated species were further analyzed. Mass spectroscopy (electrospray ionization and atmospheric pressure chemical ionization techniques) was used to confirm their molecular mass, gas chromatography to verify their fatty acid content, and a colorimetric assay to quantify the rhamnose content.  相似文献   

20.
The penta-glutamyl derivative of N-[4-[N-[3-(2,4-diamino-1,6-dihydro-6-oxo-5-pyrimidinyl)propyl]amino]-benzoyl)-L-glutamic acid (1, 5-DACTHF, 543U76) was synthesized by a convergent route. L-γ-Glutamyl-L-γ-glutamyl-L-γ-glutamyl-L-γ-glutamyl-L-γ-glutamyl-L-glutamic acid heptakis t-butyl ester ( 20 ) was prepared in ten steps from L-glutamic acid di-t-butyl ester and N-(benzyloxycarbonyl)-L-glutamic acid α-t-butyl ester. 4-[N-[3-(2,4-Diamino-1,6-dihydro-6-oxo-5-pyrimidinyl)propyl]trifluoroacetamido]benzoic acid ( 6 ), which was synthesized from pyrimidinylpropionaldehyde 3 in three steps, was condensed with 20 , followed by deprotection to provide N-[4-[N-[3-(2,4-diamino-1,6-dihydro-6-oxo-5-pyrimidinyl)propyl]amino]benzoyl]-L-γ-glutamyl-L-γ-glutamyl-L-γ-glutamyl-L-γ-glutamyl-L-γ-glutamyl-L-glutamic acid ( 2 ). Hexaglutamate 2 is a potent inhibitor of glycinamide ribonucleotide transformylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号