首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以蛋白质或多肽修饰的吲哚类菁染料Cy3为内核, 采用实验条件简单的油包水反相微乳液方法成核, 通过正硅酸乙酯水解形成的网状二氧化硅包壳的方法制备吲哚类菁染料Cy3嵌入的核壳荧光纳米颗粒. 考察了以不同等电点的蛋白质和多肽修饰的Cy3为内核材料对吲哚类菁染料Cy3嵌入的核壳荧光纳米颗粒制备的影响. 结果表明, 分别采用人免疫球蛋白(IgG)或多聚赖氨酸修饰的Cy3为内核材料, 都能制备荧光强度高、荧光稳定性强和染料泄漏极少的Cy3嵌入的核壳荧光纳米颗粒. 进一步对Cy3嵌入的核壳荧光纳米颗粒进行了表征, 并将基于这一新型的荧光纳米颗粒建立起来的生物标记方法初步应用于流感病毒DNA的检测, 其检测线性范围为3.18×10-10~1.27×10-9 mol/L, 检测下限为3.51×10-10 mol/L, 相关系数r为0.986 5.  相似文献   

2.
Fe3O4 superparamagnetic nanoparticles with various functionalities were synthesized using a chemical co-precipitation method and used to demonstrate their analytical applications for protein separation of protein and metal ion extraction. The chemically inert silica layer coated with tetraethoxysilane (TEOS) protected the Fe3O4 core from a chemical attack and allowed the nanoparticles to be well dispersed in an aqueous solution. Particularly, the beads were resistant to an acidic solution with a pH ≥ 3. The amino (− NH2) groups were covalently bonded to the silica coated Fe3O4, and then the carboxyl (− COOH) groups were functionalized to the nanoparticle surface through the reaction of − NH2 and glutaric anhydride. The synthesized magnetic nanoparticles (MNP) were characterized using FT-IR, FE-TEM, XRD, and SQUID. The presence of functional groups on the nano beads was confirmed using molecular fluorescence spectrometry. For the presence of the amino (− NH2) groups, FITC was tagged and monitored using an excitation laser with a wavelength of 473 nm and a fluorescence emission of 518 nm. Biotin was immobilized on the MNP and the fluorescent of FITC tagged on avidin was monitored to identify the carboxyl (− COOH) group.The proteins of Cytochrome C (12,000 Da), Rnase B (15,000 Da), and Myoglobin (17,000 Da) were separated using the MNP functionalized with the carboxyl (− COOH) group and identified using MALDI-TOF-MS. Amino benzyl EDTA (ethylenediaminetetraacetic acid) was immobilized on the MNP for metal–EDTA complexation to use the synthesized magnetic particles to extract metal ions for environmental and clinical application. Cu, Cd, Co, and Pb ions were extracted from ∼ 10 ng/mL solutions in the batch-type procedure and the extraction efficiency was > 90% at a pH of 4.  相似文献   

3.
发展了一种能够识别磷酸化蛋白的固定化金属离子亲和发光二氧化硅纳米粒子用于免疫印迹(Western Blot)磷酸化蛋白的标记。首先通过反相微乳液Stöber方法合成了掺杂异硫氰酸荧光素硅烷化衍生物的发光二氧化硅(FITC@SiO2)球形纳米粒子,粒子平均粒径为60 nm。然后通过共聚反应在FITC@SiO2纳米粒子表面生成一层聚合物用于保护纳米粒子,并引入N,N-(双羧甲基)-L-赖氨酸功能基团用于螯合金属离子,从而实现固定化金属离子亲和作用。以α-酪蛋白作为实验模型,用高效液相色谱-质谱研究了螯合不同金属离子的发光纳米粒子对磷酸化蛋白的识别作用。结果表明,螯合了Ti4+金属离子的发光二氧化硅FITC@SiO2纳米粒子对α-酪蛋白酶解液中的磷酸化肽段的富集作用最强。利用这种发光二氧化硅FITC@SiO2纳米粒子对磷酸化肽段的特异性识别性能,可用于Western Blot实验中标记磷酸化蛋白的条带。结果显示,α-酪蛋白的电泳条带可以被亲和发光二氧化硅FITC@SiO2纳米粒子标记,而作为对照的牛血清白蛋白则没有被标记。  相似文献   

4.
Seven new bioinspired chemosensors (2-4 and 7-10) based on fluorescent peptides were synthesized and characterized by elemental analysis, (1)H and (13)C NMR, melting point, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and IR and UV-vis absorption and emission spectroscopy. The interaction with transition- and post-transition-metal ions (Cu(2+), Ni(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Fe(3+)) has been explored by absorption and fluorescence emission spectroscopy and MALDI-TOF-MS. The reported fluorescent peptide systems, introducing biological molecules in the skeleton of the probes, enhance their sensitivity and confer them strong potential for applications in biological fields. Gold and silica nanoparticles functionalized with these peptides were also obtained. All nanoparticles were characterized by dynamic light scattering, transmission electron microscopy, and UV-vis absorption and fluorescence spectroscopy. Stable gold nanoparticles (diameter 2-10 nm) bearing ligands 1 and 4 were obtained by common reductive synthesis. Commercial silica nanoparticles were decorated at their surface using compounds 8-10, linked through a silane spacer. The same chemosensors were also taken into aqueous solutions through their dispersion in the outer layer of silica core/poly(ethylene glycol) shell nanoparticles. In both cases, these complex nanoarchitectures behaved as new sensitive materials for Ag(+) and Hg(2+) in water. The possibility of using these species in this solvent is particularly valuable because the impact on human health of heavy- and transition-metal-ion pollution is very severe, and all analytical and diagnostics investigations involve a water environment.  相似文献   

5.
Mandal A  Dandapat A  De G 《The Analyst》2012,137(3):765-772
A green and simple chemical synthesis of magic sized water soluble blue-emitting ZnS quantum dots (QDs) has been accomplished by reacting anhydrous Zn acetate, sodium sulfide and thiolactic acid (TLA) at room temperature in aqueous solution. Refluxing of this mixture in open air yielded ZnS clusters of about 3.5 nm in diameter showing very strong and narrow photoluminescence properties with long stability. Refluxing did not cause any noticeable size increment of the clusters. As a result, the QDs obtained after different refluxing conditions showed similar absorption and photoluminescence (PL) features. Use of TLA as a capping agent effectively yielded such stable and magic sized QDs. The as-synthesized and 0.5 h refluxed ZnS QDs were used as a fluorescence sensor for Ag(+) ions. It has been observed that after addition of Ag(+) ions of concentration 0.5-1 μM the strong fluorescence of ZnS QDs was almost quenched. The quenched fluorescence can be recovered by adding ethylenediamine to form a complex with Ag(+) ions. The other metal ions (K(+), Ca(2+), Au(3+), Cu(2+), Fe(3+), Mn(2+), Mg(2+), Co(2+)) showed little or no effect on the fluorescence of ZnS QDs when tested individually or as a mixture. In the presence of all these ions, Ag(+) responded well and therefore ZnS QDs reported in this work can be used as a Ag(+) ion fluorescence sensor.  相似文献   

6.
This work describes a quantitative method to detect DNA damage in the presence of Pb and Cd ions using a surface modified microarray chip and a laser induced fluorescence microscopy (LIFM). The detection was carried out by the immobilization of a single-stranded DNA oligomer, tagged with a Cy5 fluorophore on a polydimethylsiloxane (PDMS) microarray chip followed by LIFM. Sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC) was attached as a cross-linker via the formation of covalent amide bonds. Then, the single-stranded DNA oligomer containing Cy5 as a fluorophore and thiol functional groups at both terminals, was bonded to the linker by reaction with sulfhydryl group. As the DNA oligomers were reacted with metal ions of Pb and Cd, the un-cleaved DNA oligomers were quantitatively identified by monitoring Cy5 fluorescence. Cadmium showed a quenching constant of 0.84 in the Stern–Volmer plot, whereas lead gave 0.22, indicating that cadmium ions suppress fluorescence more than lead ions. When optimized, fluorescence reductions of 23% (± 2.1) for Pb and 25% (± 1.4) for Cd were observed in air and decreased to almost < 5.0% in a radical scavenger of 5 mM. The cleaved DNA was also confirmed by MALDI-TOF-MS. In result, this experimental method using a microarray chip with surface modification provided quantitative determination of DNA oligomer damage with reproducible results, significantly reduced sample volumes and analysis times.  相似文献   

7.
谢楠  陈懿 《中国化学》2006,24(12):1800-1803
A hydroxyl substituted phenolic Schiff base 1, used as sensor for detection of Zn^2+, was synthesized and investigated. It was found that a strong fluorescence emission was observed when 1 bound to Zn^2+ in acetonitrile, whereas no fluorescence emission was detected when 1 bound to other metal ions (Fe^2+, Co^2+, Ni^2+, Cu^2+, Cd^2+, Hg^2+, Mg^2+, Pb^2+, Ca^2+, Ba^2+, Sr^2+) except for Mg^2+, for which a weak fluorescence emission was detected in the same condition. Competition experiment showed that no obvious interference was observed in its fluorescence while 1 performed the titration with Zn^2+ in the different mixtures of metal ions. To understand the site where Zn^2+ coordinated to the ligand and the mechanism of binding, three other hydroxyl substituted phenolic Schiff bases 2-4 were synthesized and their binding reactions with Zn^2+were also investigated.  相似文献   

8.
Emissive molecular probes based on amino acid moieties are very appealing because of their application as new building blocks in peptide synthesis. Two new bioinspired coumarin probes (L1 and L2) were synthesized and fully characterized by elemental analysis, infrared, (1)H NMR, (13)C NMR, UV-vis absorption and emission spectroscopy, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS), lifetime measurements, and X-ray crystal diffraction. Their sensing ability toward alkaline earth, transition, and post-transition metal ions (Ca(2+), Zn(2+), Cd(2+), Cu(2+), Ni(2+), Hg(2+), Ag(+), and Al(3+)) and their acid-base behavior (H(+), OH(-)) were explored in absolute ethanol by absorption and fluorescence spectroscopy. Compound L1 shows a strong complexation constant with the soft metal ions Zn(2+), Cd(2+), and Ag(+). Compound L2 shows a high fluorescence quantum yield, and it could be used as a non-pH-dependent fluorescent biological probe. Very small gold nanoparticles (AuNPs) using compounds L1 and L2 as stabilizers were obtained by using a reductive method and were characterized by UV-vis, light scattering, and transmission electron microscopy (TEM). Dynamic light scattering and TEM studies show that the formation of small nanoparticles is around 4.27 ± 0.64 nm for L1 and around 2.69 ± 0.96 nm for L2. The new stable Cou@AuNPs behaved as supramolecular chemosensors, which have been selective for the heavy element Hg(2+), with a concomitant change of color from pink to dark red/brown and an increase of size up to 100-fold.  相似文献   

9.
Lin YW  Huang CC  Chang HT 《The Analyst》2011,136(5):863-871
Monitoring the levels of potentially toxic metal (PTM) ions (e.g., Hg(2+), Pb(2+), Cu(2+)) in aquatic ecosystems is important because these ions can have severe effects on human health and the environment. Gold (Au) nanomaterials are attractive sensing materials because of their unique size- and shape-dependent optical properties. This review focuses on optical assays for Hg(2+), Pb(2+), and Cu(2+) ions using functionalized Au nanomaterials. The syntheses of functionalized Au nanomaterials are discussed. We briefly review sensing approaches based on changes in absorbance resulting from metal ion-induced aggregation of Au nanoparticles (NPs) or direct deposition of metal ions onto Au NPs. The super-quenching properties of Au NPs allow them to be employed in 'turn on' and 'turn off' fluorescence approaches for the sensitive and selective detection of Hg(2+), Pb(2+), and Cu(2+) ions. We highlight approaches based on fluorescence quenching through analyte-induced aggregation or the formation of metallophilic complexes of Au nanodots (NDs). We discuss the roles of several factors affecting the selectivity and sensitivity of the nanosensors toward the analytes: the size of the Au nanomaterial, the length and sequence of the DNA or the nature of the thiol, the surface density of the recognition ligand, and the ionic strength and pH of the buffer solution. In addition, we emphasize the potential of using new nanomaterials (e.g., fluorescent silver nanoclusters) for the detection of PTM ions.  相似文献   

10.
Ligand-capped gold nanoparticles were synthesized by capping monothiol derivatives of 2,2'-dipyridyl onto the surface of Au nanoparticles (Au-BT). The average size of the metal core is around 4 nm, with a shell of approximately 340 bipyridine ligands around the Au nanoparticle. The high local concentration of the chelating ligands ( approximately 5 M) around the Au nanoparticle makes these particles excellent ion sponges, and their complexation with Eu(III)/Tb(III) ions yields phosphorescent nanomaterials. Absorption spectral studies confirm a 1:3 complexation between Eu(III)/Tb(III) ions and bipyridines, functionalized on the surface of Au nanoparticles. The red-emitting Au-BT:Eu(III) complex exhibits a long lifetime of 0.36 ms with six line-like emission peaks, whereas the green-emitting Au-BT:Tb(III) complex exhibits a lifetime of 0.7 ms with four line-like emission peaks. These phosphorescent nanomaterials, designed by linking BT:Eu(III) complexes to Au nanoparticles, were further utilized as sensors for metal cations. A dramatic decrease in the luminescence was observed upon addition of alkaline earth metal ions (Ca(2+), Mg(2+)) and transition metal ions (Cu(2+), Zn(2+), Ni(2+)), resulting from an isomorphous substitution of Eu(III) ions, whereas the luminescence intensity was not influenced by the addition of Na(+) and K(+) ions. Direct interaction of bipyridine-capped Au nanoparticles with Cu(2+) ions brings the nanohybrid systems closer, leading to the formation of three-dimensional superstructures. Strong interparticle plasmon interactions were observed in these closely spaced Au nanoparticles.  相似文献   

11.
A newly synthesized bis-1,8-naphthalimide aimed to increase its fluorescence intensity in the presence of protons or metal cations has been investigated. Its spectral photophysical characteristics in acetonitrile and chloroform solutions are described. The influence of metal cations (Zn(2+), Ni(2+), Ce(3+), Co(2+), Cu(2+) and Ag(+)) and protons on the fluorescence intensity has been investigate with regard to obtain fluorescence sensors for this ions in the environment.  相似文献   

12.
A previously proposed method for metal deposition with silver [Kobayashi et al., Chem. Mater. 13 (2001) 1630] was extended to uniform deposition of gold nanoparticles on submicrometer-sized silica spheres. The present method consisted of three steps: (1) the adsorption of Sn(2+) ions took place on surface of silica particles, (2) Ag(+) ions added were reduced and simultaneously adsorbed to the surface, while Sn(2+) was oxidized to Sn(4+), and (3) Au(+) ions added were reduced and deposited on the Ag surface. TEM observation, X-ray diffractometry, and UV-vis absorption spectroscopy revealed that gold metal nanoparticles with an average particle size of 13 nm and a crystal size of 5.1 nm were formed on the silica spheres with a size of 273 nm at an Au concentration of 0.77 M.  相似文献   

13.
Two tris(2-aminoethyl)amine (tren) based tripodal amide fluoroionophores, 1 and 2, functionalized with quinoline (chelating fluorophore) and naphthalene (non-chelating fluorophore) respectively, are synthesized in good yields. Fluoroionophore 1 shows a selective UV-Vis spectral shift in the case of Hg(2+) in acetonitrile among different metal ions like Li(+), Na(+), Ca(2+), Mg(2+), Cr(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Ag(+). On the other hand, fluoroionophore 2 shows no selectivity towards any of the above metal ions in the UV-Vis study. Furthermore, 1 shows a selective chelation induced fluorescence enhancement in the presence of Hg(2+) whereas 2 shows the enhancement of fluorescence with most of the metal ions via a photoinduced charge transfer mechanism. The naked eye detection of Hg(2+) in an acetonitrile solution of 1 shows a greenish fluorescence upon UV light irradiation. The isolated Hg(2+) complex of 1, 3, shows a similar UV-Vis and fluorescence spectral output as observed from in situ spectroscopic studies of 1 in the presence of Hg(2+). Infra-red (IR) and (1)H- NMR studies also reveal the interaction of Hg(2+) with the quinoline nitrogen atoms as well as with the amide functionality.  相似文献   

14.
Chen C  Wang R  Guo L  Fu N  Dong H  Yuan Y 《Organic letters》2011,13(5):1162-1165
A novel squaraine-based chemosensor SQ-1 has been synthesized, and its sensing behavior toward various metal ions was investigated by UV-vis and fluorescence spectroscopies. In AcOH-H(2)O (40:60, v/v) solution, Hg(2+) ions coordinate with SQ-1 causing a deaggregation which induces a visual color and absorption spectral changes as well as strong fluorescence. In contrast, the addition of other metals (e.g., Pb(2+), Cd(2+), Cu(2+), Zn(2+), Al(3+), Ni(2+), Co(2+), Fe(3+), Ca(2+), K(+), Mg(2+), Na(+), and Ag(+)) does not induce these changes at all. Thus SQ-1 is a specific Hg(2+) sensing agent due to the inducing deaggregation of the dye molecule by Hg(2+).  相似文献   

15.
We report within this paper the development of a fiber-optic based sensor for Hg(II) ions. Fluorescent carbon nanoparticles were synthesized by laser ablation and functionalized with PEG200 and N-acetyl-l-cysteine so they can be anionic in nature. This characteristic facilitated their deposition by the layer-by-layer assembly method into thin alternating films along with a cationic polyelectrolyte, poly(ethyleneimine). Such films could be immobilized onto the tip of a glass optical fiber, allowing the construction of an optical fluorescence sensor. When immobilized on the fiber-optic tip, the resultant sensor was capable of selectively detecting sub-micromolar concentrations of Hg(II) with an increased sensitivity compared to carbon dot solutions. The fluorescence of the carbon dots was quenched by up to 44% by Hg(II) ions and interference from other metal ions was minimal.  相似文献   

16.
The 8-17 DNAzyme is a DNA metalloenzyme catalyzing RNA transesterification in the presence of divalent metal ions, with activity following the order Pb2+ > Zn2+ >Mg2+. Since the DNAzyme has been used as a metal ion sensor, its metal-induced global folding was studied by fluorescence resonance energy transfer (FRET) by labeling the three stems of the DNAzyme with the Cy3/Cy5 FRET pair two stems at a time in order to gain deeper insight into the role of different metal ions in its structure and function. FRET results indicated that, in the presence of Zn2+ and Mg2+, the DNAzyme folds into a compact structure, stem III approaching a configuration defined by stems I and II without changing the angle between stems I and II. Correlations between metal-induced folding and activity were also studied. For Zn2+ and Mg2+, the metal ion with higher affinity for the DNAzyme in global folding (Kd(Zn) = 52.6 microM and Kd(Mg) = 1.36 mM) also displays higher affinity in activity (Kd(Zn) = 1.15 mM and Kd(Mg) = 53 mM) under the same conditions. Global folding was saturated at much lower concentrations of Zn2+ and Mg2+ than the cleavage activities, indicating the global folding of the DNAzyme occurs before the cleavage activity for those metal ions. Surprisingly, no Pb2+-dependent global folding was observed. These results suggest that for Pb2+ global folding of the DNAzyme may not be a necessary step in its function, which may contribute to the DNAzyme having the highest activity in the presence of Pb2+.  相似文献   

17.
傅昕  张何  黄可龙 《分析化学》2012,40(8):1169-1174
以氧化镉和硬脂酸锌为前驱体,合成了CdSe/ZnS核壳型量子点(QDs).采用反相微乳液技术,在温和条件下实现了硅壳包被的CdSe/ZnS荧光纳米颗粒的成功制备.在戊二醛的交联作用下,以金黄色葡萄球菌(S.aureus)为目标细菌、荧光纳米颗粒为荧光探针,建立了一种高灵敏的、简单快速的细菌计数的方法,并借助荧光显微镜成功地进行成像探测研究.通过考察荧光纳米颗粒与细菌的孵育时间、包入硅壳的核壳量子点质量等多种因素的影响.在最优化条件下,本方法的线性范围为5×102~5×107 CFU/mL;检出限为500 CFU/mL;线性回归方程为Y=494.96749X- 1194.25738(R=0.9960).本方法操作简单,检测时间短,有效克服了传统平板计数方法和基于有机染料的荧光检测方法存在的缺陷,提高了灵敏度.将此法用于6种实际样品的细菌数量测定,检测结果与平板计数方法基本一致,相对标准偏差在3.1%~8.2%之间,结果令人满意.  相似文献   

18.
Some novel imidazole derivatives were developed as highly sensitive chemisensors for transition metal ions. A prominent fluorescence enhancement was found in the presence of transition metal ions such as Hg(2+), Pb(2+), Cu(2+), Zn(2+), Co(2+) and Fe(2+) and this was suggested to result from the suppression of radiationless transitions from the n-π* state in the chemisensors. By DFT calculation HOMO-LUMO energies were calculated, the electric dipole moment (μ) and the hyperpolarizability (β) of the investigated molecules have been studied experimentally and also theoretically. These synthesized molecules were found to have microscopic non-linear optical (NLO) behaviour with non-zero tensor components.  相似文献   

19.
设计并合成了用于识别锌离子的荧光传感分子——2-羟基-1-萘甲醛缩-4-二甲氨基苯甲酰腙(1),其结构经1H NMR,IR和MS表征。利用荧光光谱研究了在乙腈中1对过渡金属离子(Zn2+,Cd2+,Cu2+,Hg2+,Pb2+和N i2+)的识别能力。结果表明:1表现出对Zn2+的良好选择性,Zn2+的加入导致1的长波长荧光增强449倍。Job曲线确定1与Zn2+形成1∶1型配合物。  相似文献   

20.
A rhodamine B derivative 4 containing a highly electron-rich S atom has been synthesized as a fluorescence turn-on chemodosimeter for Cu(2+). Following Cu(2+)-promoted ring-opening, redox and hydrolysis reactions, comparable amplifications of absorption and fluorescence signals were observed upon addition of Cu(2+); this suggests that chemodosimeter 4 effectively avoided the fluorescence quenching caused by the paramagnetic nature of Cu(2+). Importantly, 4 can selectively recognize Cu(2+) in aqueous media in the presence of other trace metal ions in organisms (such as Fe(3+), Fe(2+), Cu(+), Zn(2+), Cr(3+), Mn(2+), Co(2+), and Ni(2+)), abundant cellular cations (such as Na(+), K(+), Mg(2+), and Ca(2+)), and the prevalent toxic metal ions in the environment (such as Pb(2+) and Cd(2+)) with high sensitivity (detection limit < or =10 ppb) and a rapid response time (< or =1 min). Moreover, by virtue of the chemodosimeter as fluorescent probe for Cu(2+), confocal and two-photon microscopy experiments revealed a significant increase of intracellular Cu(2+) concentration and the subcellular distribution of Cu(2+), which was internalized into the living HeLa cells upon incubation in growth medium supplemented with 50 muM CuCl(2) for 20 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号