首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Bottlebrush polymers (BBPs) are three‐dimensional polymers with great academic and industrial potential owing to their highly tunable and intricate architecture. The most popular method to synthesize BBPs is ring‐opening metathesis polymerization (ROMP) with Grubbs' catalyst, allowing living grafting‐through polymerization of macromonomers of up to ultrahigh molecular weights with narrow molecular weight distribution. In this case, it has been well recognized that the purity of macromonomers (MMs) is critical for a successful ROMP reaction. For MMs synthesized from reversible‐deactivation radical polymerization, Grubbs and Xia demonstrated that the better control of ROMP reaction can be achieved when they are prepared via “growth‐then‐coupling” method that is coupling a norbornenyl group to end‐functionalized prepolymers. However, these MMs can also contain various residual impurities from previous synthetic steps, which can potentially poison the catalyst and hamper the ROMP reaction. Herein, we intentionally doped possible impurities into purified MMs to identify the most poisoning species. As a result, it was found that alkyne‐functionalized norbornene most significantly retarded the ROMP reaction due to a formation of Ru‐vinyl‐carbene intermediates having low catalytic reactivity, whereas the other reagents such as solvent, Cu‐catalyst, ligands, and azido‐terminated prepolymers were relatively inert. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 726–737  相似文献   

2.
Controlled preparation of brush polymers is important in the design of functional materials. In this study, poly(tert-butyl acrylate) macromonomers functionalized with norbornenyl end group(NB-PtBA) were synthesized via atom transfer radical polymerization in three different molecular weights, 2000(NB-PtBA-2k), 3000(NB-PtBA-3k), and 8000(NB-PtBA-8k). Additionally, brush polymers with PtBA as side chains were synthesized via ring-opening metathesis polymerization(ROMP). Kinetic studies on ROMP of NB-PtBA showed that there was a ceiling degree of polymerization(CDP) for the brush polymers, beyond which the polymerization of NB-PtBA was out of control. For brush polymers of P[NB-PtBA-2k] and P[NB-PtBA-3k], CDPs were estimated to be ca. 400, but the value of P[NB-PtBA-8k] was ca. 100. Therefore, the controlled ROMP of brush polymers was critical at the CDP limit with increased macromonomer molecular weight.  相似文献   

3.
The synthesis of three different poly(ethylene oxide) macromonomers with a norbornene and oxanorbornene end group is presented. The macromonomers were polymerized to comb‐polymers by ring‐opening metathesis polymerization (ROMP) using Grubbs' Catalyst G3 to produce water soluble polymers with polydispersities between 1.04 and 1.30 and molecular weights between 14,000 and 50,000 g/mol. Characterization by static and dynamic light scattering reveals that the comb‐polymers with norbornene backbone are molecularly disperse in aqueous solution, while the oxanorbornene‐backbone polymers form small water‐soluble aggregates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2640–2648, 2008  相似文献   

4.
Madkour AE  Koch AH  Lienkamp K  Tew GN 《Macromolecules》2010,43(10):4557-4561
We present two novel allyl-based terminating agents that can be used to end-functionalize living polymer chains obtained by ring-opening metathesis polymerization (ROMP) using Grubbs' third generation catalyst. Both terminating agents can be easily synthesized and yield ROMP polymers with stable, storable activated ester groups at the chain-end. These end-functionalized ROMP polymers are attractive building blocks for advanced polymeric materials, especially in the biomedical field. Dye-labeling and surface-coupling of antimicrobially active polymers using these end-groups were demonstrated.  相似文献   

5.
《Comptes Rendus Chimie》2002,5(4):225-234
Since their first utilisation in 1958 for the synthesis of graft copolymers, macromonomers have raised increasing interest because of their ability to provide an easy access to a large number of (co)polymers of different chemical natures and various controlled topologies (comb-like, bottlebrush, star-like, graft copolymers...) exhibiting very different solution or solid-state properties compared to their linear homologues. During the first decades, the (co)polymerisation of macromonomers was based on poorly controlled free radical polymerisations. Therefore, it was difficult to obtain polymers in a controlled manner. With the appearance of Ring Opening Metathesis Polymerisation (ROMP) or of new free radical processes such as Atom Transfer Radical Polymerisation (ATRP) that allow control of molar masses, and of Ziegler–Natta-type polymerisation that allows control of the tacticity of the polymacromonomer backbone, these processes have been increasingly utilised for macromonomer (co)polymerisations. In this paper, a review of the results published in the literature regarding the homopolymerisation of macromonomers in the presence of transition metal is presented.  相似文献   

6.
This article describes the construction of branched ROMP‐polymer architectures via polycondensation of ABn‐type macromonomers. For this convergent strategy, a polymer was synthesized that carries several hydroxyl‐groups along the polymer chain and one carboxylic acid group at the chain end. An esterification reaction between these functional groups yielded long‐chain branched polymers. The polymers were analyzed by NMR and SEC to monitor the condensation reaction. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

7.
Various poly(macromonomer)s containing sugars have been prepared by ROMP of norbornene macromonomers substituted with ROMP block copolymers containing acetal-protected sugars as the side chain, which upon removal of the protecting group affords a novel amphiphilic architecture.  相似文献   

8.
The present work discusses the synthesis of well-defined comb-shaped polymers or graft copolymer structures based on coordination (co)polymerization of macromonomers. Polystyrene macromonomers with various polymerizable entities were synthesized first by induced deactivation reactions. The homopolymerization of these macromonomers in the presence of selected early or late transition metal catalysts was examined. Comb-shaped polymers could be obtained over a large range of DP values. The results were compared to those obtained by anionic homopolymerization. Some results on the copolymerization of these PS macromonomers with ethylene in the presence of VERSIPOLTM type catalysts were presented.  相似文献   

9.
Herein, we report one-step synthesis of polymethacrylates-based macromonomers (MMs) in the presence of an organocatalyst phosphazene base (t-BuP4) and a functional initiator N-butyl-4-vinylbenzamide (N-BVBA) containing a secondary amide and a styrenic double bond. A series of styrenic MMs with controlled molecular weight and relatively narrow polydispersity were synthesized under mild conditions. Detailed NMR analyses of the initiation process suggested that the anionic polymerization was initiated by nitrogen anion generated from abstraction of the proton from the secondary amide. NMR and MALDI-TOF MS analyses confirmed: (1) the selective polymerization of methacrylate-type double bonds, (2) controlled chain-end functionality of MMs with an unreacted styrenic double bond, as well as (3) the absence of transesterification between N-BVBA and methacrylate monomers. Furthermore, the homopolymerization and copolymerization of the MMs with comonomers were carried out for the preparation of graft copolymers. Through conventional radical polymerization, graft copolymers with different grafting densities were obtained at high MMs conversions, indicating the high reactivity of MMs. Thus, the one-step approach demonstrates a simple metal-free access to the controlled synthesis of MMs, and the prepared MMs can polymerize efficiently to convert into graft copolymers.  相似文献   

10.
陈柯睿  胡欣  邱江凯  朱宁  郭凯 《化学进展》2020,32(1):93-102
瓶刷聚合物是一类具有独特侧链结构的梳形聚合物。功能性瓶刷聚合物在光子晶体、表面活性剂、医药载体、防污涂层以及智能材料等领域具有良好的应用价值。通过开环易位聚合合成瓶刷聚合物的方法具有合成步骤简单、聚合物接枝密度高和侧链组成均一等优点,在控制聚合物组成、分子量和分散性等方面具有显著优势。本文基于开环易位聚合,简述了合成瓶刷均聚物以及嵌段型、混合型和核-壳型三种类型的瓶刷共聚物的方法,并介绍了合成精确结构的瓶刷聚合物的新进展。  相似文献   

11.
Polynorbornenes substituted with two different peptide sequences from the RGD-containing integrin cell-binding domain of fibronectin are potent inhibitors of human foreskin fibroblast cell adhesion to fibronectin-coated surfaces. Ring-opening metathesis polymerization (ROMP) using Ru==CHPh(Cl)(2)(PCy(3))(DHIMes) (1) as an initiator produced polymers substituted with GRGDS and PHSRN peptide sequences. The inhibitory activity was quantified for these polymers and compared to the free peptides and GRGES-containing controls. A homopolymer substituted with GRGDS peptides was significantly more active than the free GRGDS peptide (IC(50) of 0.18 +/- 0.03 and 1.33 +/- 0.20 mM respectively), and the copolymer containing both GRGDS and PHSRN is the most potent inhibitor (IC(50) of 0.04 +/- 0.01 mM). These results demonstrate that significant enhancements of observed biological activity can be obtained from polymeric materials containing more than one type of multivalent ligand and that ROMP is a useful method to synthesize such well-defined copolymers.  相似文献   

12.
Multi‐block polymers are highly desirable for their addressable functions that are both unique and complementary among the blocks. With metal‐containing polymers, the goal is even more challenging insofar as the metal properties may considerably extend the materials functions to sensing, catalysis, interaction with metal nanoparticles, and electro‐ or photochrome switching. Ring‐opening metathesis polymerization (ROMP) has become available for the formation of living polymers using highly efficient initiators such as the 3rd generation Grubbs catalyst [RuCl2(NHC)(=CHPh)(3‐Br‐C5H4N)2], 1 . Among the 24 possibilities to introduce 4 blocks of metallopolymers into a tetrablock metallocopolymer by ROMP using the catalyst 1 , two viable pathways are disclosed. The synthesis, characterization, electrochemistry, electron‐transfer chemistry, and remarkable electrochromic properties of these new nanomaterials are presented.  相似文献   

13.
Four kinds of functional polyethylene carrying thioester pendants were synthesized via ring‐opening metathesis polymerization (ROMP) of alkyl cyclopent‐3‐enecarbothioate catalyzed by a ruthenium‐based commercial catalyst and subsequent hydrogenation of the ROMP products (alkyl = ethyl, n‐butyl, n‐octyl, or n‐dodecyl). In these polymers the pendant alkyl thioester groups are precisely distributed along the backbone on every five methylene carbons. Chain structure, molecular weight and molecular weight distribution of the polymers were characterized by 1H and 13C NMR, and GPC. The ROMP reactions all reached high monomer conversions, and hydrogenation of the ROMP products were exhaustive. Thermal transitions and side chain crystallization behaviors of the polymer were investigated and characterized by DSC and TGA. Glass transition temperature and melting temperature of these polymers were higher than the counterparts containing ester pendants. TGA analysis indicated that all the thioester‐containing polymers exhibited moderate thermal stability, and the sulfur‐containing polymers show slightly lower thermal stability than their counterparts without sulfur. The new family of functionalized polyethylenes could be used as models of ethylene‐thioacrylate copolymers, and find applications as novel functional materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4027–4036  相似文献   

14.
Alkene metathesis is a superb methodology. We report the progress using alkene metathesis in the synthesis of polymeric organic semiconductors. Three classes of polymers have been synthesized using acyclic diene metathesis (ADMET) or ring opening metathesis polymerization (ROMP), viz., poly(acetylene)s (PA), poly(arylene‐vinylene)s (PAV), and organometallic polymers. For PAs, ROMP of cyclooctatetraenes is best, whereas for PAV, both ADMET and indirect and direct ROMP are viable. Metathesis performs flawlessly with the correct monomers, as molybdenum and particularly the robust Ru carbenes demonstrate. When performing ROMP, one is often rewarded with structurally uniform polymers that can display very low polydispersities. Overall, metathesis is a powerful tool for the preparation of semiconducting polymers.  相似文献   

15.
A new versatile synthesis strategy for macromonomers has been developed that uses the living ring‐opening metathesis polymerization (ROMP) with commercial Grubbs first generation ruthenium initiators. Homopolymers as well as diblock copolymers were end‐functionalized with norbornene derivatives to serve as macromonomers. The graft copolymerization of the macromonomers was also carried out employing ROMP. Well‐defined and highly functional graft copolymers are accessible by this new synthetic route.

  相似文献   


16.
The living cationic polymerization of vinyl ethers has been used to prepare a number of new polymers with special properties. Sequential polymerization of the hydrophilic methyl vinyl ether (MVE) and the hydrophobic octadecyl vinyl ether (ODVE) has lead to amphiphilic block-copolymers with emulsifying properties for water/decane mixtures. Poly(vinyl-ether) macromonomers were obtained by end-capping of living polymers with hydroxyethyl acrylate. Copolymerization of polyODVE-macromonomer with usual acrylates lead to highly branched hydrophobic polymers. When the end-capping was performed with bifunctionally living polymers, the corresponding “bis-macromonomers” were obtained. Copolymerization of such bis-macromonomers with styrene or butyl acrylate, leads to the formation of segmented polymer networks. In the case of polyODVE-poly(butyl acrylate), these networks showed a pronounced phase separation. Due to the crystallinity of the polyODVE domains, these materials showed shape memory properties.  相似文献   

17.
The present paper discusses the ability of macromonomers to undergo polymerization and copolymerization with acrylic and vinylic monomers. These macromonomers have been synthesized by classical deactivation reactions. Special interest was devoted to macromonomers fitted with polymerizable methylmethacrylate end-groups. The anionic homopolymerization of ω-methacryloyloxy-polystyrene macromonomers was studied in detail and the influence of the molar mass of the macromonomer on the apparent propagation constant was determined. The anionic homopolymerization of ω-methacryloyloxy poly(ethylene oxide) macro-monomers was also examined. In both cases, lithium chloride has to be added in order to reach a better control of the reaction. The dilute solution properties of these polystyrene polymacromonomers have been studied. Some preliminary attempts to apply that anionic homopolymerization of macromonomers to the preparation of “dumbbell” and “palmtree” polymers were presented.  相似文献   

18.
A series of ethylene–vinyl chloride‐like copolymers were prepared by ring‐opening metathesis polymerization (ROMP). The route to these materials included the bulk polymerization of 5‐chlorocyclooctene and 5,6‐dichlorocyclooctene with the first‐generation Grubbs' catalyst, followed by diimide hydrogenation of the resulting unsaturated polymers. In addition, the amount of chlorine in these materials was varied by the copolymerization of 5‐chlorocyclooctene with cyclooctene. These materials were fully characterized by NMR (1H and 13C), gel permeation chromatography, and Fourier transform infrared spectroscopy. Finally, hydroboration was carried out on the ROMP product of 5‐chlorocyclooctene to yield a polymer, which was effectively a vinyl alcohol–vinyl chloride–ethylene terpolymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2107–2116, 2003  相似文献   

19.
The ring-opening metathesis polymerization (ROMP) reaction is extraordinarily useful for the preparation of a large variety of polymers. We report that the length (n = 25-50) of high-substituent-density oligopeptide polymers synthesized by ROMP is dramatically improved upon addition of LiCl to reduce polymer and oligopeptide aggregation. This methodology should significantly expand the variety of polymers that may be prepared by ROMP and be of general use with norbornyl oligopeptides of any sequence.  相似文献   

20.
Although controlled radical polymerization is an excellent tool to make precision polymeric materials, reversal of the process to retrieve the starting monomer is far less explored despite the significance of chemical recycling. Here, we investigate the bulk depolymerization of RAFT and ATRP-synthesized polymers under identical conditions. RAFT-synthesized polymers undergo a relatively low-temperature solvent-free depolymerization back to monomer thanks to the partial in situ transformation of the RAFT end-group to macromonomer. Instead, ATRP-synthesized polymers can only depolymerize at significantly higher temperatures (>350 °C) through random backbone scission. To aid a more complete depolymerization at even lower temperatures, we performed a facile and quantitative end-group modification strategy in which both ATRP and RAFT end-groups were successfully converted to macromonomers. The macromonomers triggered a lower temperature bulk depolymerization with an onset at 150 °C yielding up to 90 % of monomer regeneration. The versatility of the methodology was demonstrated by a scalable depolymerization (≈10 g of starting polymer) retrieving 84 % of the starting monomer intact which could be subsequently used for further polymerization. This work presents a new low-energy approach for depolymerizing controlled radical polymers and creates many future opportunities as high-yielding, solvent-free and scalable depolymerization methods are sought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号