首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural investigation of molecules in the vapor over neodymium tribromide was performed by synchronous gas-phase electron diffraction and mass spectrometric (GED/MS) experiments at 1110(10) K. Besides the monomeric molecules (NdBr3), a small amount (0.7%) of the dimer (Nd2Br6) was detected. For NdBr3, the thermal-average bond length r g (Nd–Br) of 2.675(6) Å was determined. The equilibrium structure was estimated to be planar (or nearly planar) with r e (Nd–Br) of 2.659(7) Å. Three vibrational frequencies were estimated using the GED data: 1 = 193 cm–1, 2 = 35 cm–1, 4 = 41 cm–1. The structural parameters of Nd2Br6 could not be refined and were constrained at the estimated values during the analysis.  相似文献   

2.
For rigid polyatomic molecules, a procedure is described for determining their equilibrium geometrical structures by processing gas-phase electron diffraction, spectroscopy, and quantum-chemical data. The efficiency of the procedure is demonstrated by reference to the 1,2-thiaarsol molecule. For this molecule, quantum-chemical calculations of different degrees of complexity have been carried out, and harmonic and anharmonic force fields have been constructed. The force constants were employed for determining the equilibrium geometry from experimental data. Analysis of the results of this study suggests that the calculated vibrational corrections to the internuclear distances are almost independent of the level of the quantum-chemical calculations.Original Russian Text Copyright © 2004 by Yu. I. Tarasov, I. V. Kochikov, D. M. Kovtun, N. Vogt, B. K. Novosadov, and A. S. Saakyan__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 822–829. September–October, 2004.  相似文献   

3.
At 75, gas-phase electron diffraction is still the method of choice for selected problems in molecular structure determination. It works best when being applied with other techniques in a concerted way.  相似文献   

4.
The molecular structure of 1,2,4,5-tetracyanobenzene has been determined by gas-phase electron diffraction and by ab initio calculations at several levels of theory. The electron diffraction study indicates an elongation of the aromatic ring along the (H)CC(H) axis, characterized by angular deformation of the benzene ring and lengthening of the (NC)C—C(CN) bonds. The following bond lengths (r g) and bond angles were obtained by electron diffraction: .  相似文献   

5.
Structural analysis of electron diffraction data on trimethylstannylacetylene, (CH3)3SnCCH (1), obtained in the previous investigation (the nozzle temperature being 22°C), has been performed with consideration of nonlinear kinematic effects at the first-order level of perturbation theory (h1). The geometry and force field of 1 have been calculated by the RHF and MP2 (frozen core) methods. The effective core potential in SBK form and the optimized 31G* valence basis set have been applied in the case of Sn atom. The 6-311G** basis set have been used for carbon and hydrogen atoms. Vibrational spectra of the light and two deuterated isotopomers of 1 have been interpreted using the C 3v equilibrium molecular symmetry. For this purpose, the procedure of scaling the quantum-chemical force field by fitting the calculated frequencies to the experimental ones has been employed. The root-mean-square (RMS) vibrational amplitudes and shrinkage corrections used in the electron diffraction analysis have been calculated from the scaled quantum-chemical force field. It has been shown that flexibility of the linear fragment in 1 decreases considerably compared to that of the symmetrically substituted acetylene fragment in the (CH3)3SnCCSn(CH3)3 molecule (2). Using these data, we refined the geometrical parameters of 1 in terms of a static C 3v symmetry molecular model. The following r h1 values have been obtained (the bond distances are given in Å and the valence angles in degrees): Sn—CMe 2.147(7), Sn—C2.096(17), CC 1.237(11), CMe—H (av.) 1.091(4), CMe—Sn-C107.1(7), Sn—CMe—H (av.) 113.4(6). The values in parentheses are experimental total errors including least-squares standard deviation values and scale uncertainties. The structural parameters of linear fragments in both ethynyl derivatives of Sn 1 and 2 are found to be virtually equal.  相似文献   

6.
The molecular structure and conformation of p-bis(trimethylsilyl)benzene have been investigated by gas-phase electron diffraction, ab initio MO calculations at the HF/6-31G*, MP2(f.c.)/6-31G*, and B3LYP/6-31G* levels, and MM3 molecular mechanics calculations. The calculations indicate the syn- and anti-coplanar conformations, with two bonds in the plane of the benzene ring, to be energy minima. The perpendicular conformations, with two bonds in a plane orthogonal to the ring plane, are transition states. The two coplanar conformers have nearly the same energy with a low interconversion barrier, 0.3–0.5 kJ mol–1. The calculated lengths of the and bonds differ by only a few thousandths of an angstrom, in agreement with electron diffraction results from molecules containing either or bonds. The geometrical distortion of the benzene ring in p-bis(trimethylsilyl)-benzene may be described by superimposing independent distortions from each of the two SiMe3 groups. The electron diffraction intensities from a previous study (Rozsondai, B.; Zelei, B.; Hargittai, I. J. Mol. Struct. 1982, 95, 187) have been reanalyzed, imposing constraints from the theoretical calculations, and using a model based on a 1:1 mixture of the two coplanar conformers. The effective torsion angles of the SiMe3 groups may indicate nearly free rotation. Important geometrical parameters from the present electron diffraction analysis are , and . While the mean bond lengths are virtually the same from the previous and present analyses, the new ipso angle is in better agreement with the MO calculations [HF, 116.9° MP2(f.c.), 117.1° B3LYP, 116.9°].  相似文献   

7.
The molecular structure of MnI2 has been determined by gas-phase electron diffraction. The analysis confirmed the linearity of the equilibrium configuration of the monomer with a bond length (r g) of 2.538 ± 0.008 Å. The presence of about 7% dimer was also indicated. The experimental data were consistent with the usual dimer model with two halogen bridges but they were insufficient to determine the dimer structure unambiguously.  相似文献   

8.
The molecular structure of samarium dibromide has been studied by electron diffraction at T exp = 1250(50) K. The molecule has C2v symmetry; the internuclear distance Rg(Sm–Br) = 274.5(5) pm; g =131(6)°. The vibration frequencies were estimated from the experimental values of the mean square vibration amplitudes.  相似文献   

9.
Structure determination of covalent organic frameworks (COFs) with atomic precision is a bottleneck that hinders the development of COF chemistry. Although three-dimensional electron diffraction (3D-ED) data has been used to solve structures of sub-micrometer-sized COFs, successful structure solution is not guaranteed as the data resolution is usually low. We demonstrate that the direct-space strategy for structure solution, implemented using a genetic algorithm (GA), is a successful approach for structure determination of COF-300 from 3D-ED data. Structural models with different geometric constraints were considered in the GA calculations, with successful structure solution achieved from room-temperature 3D-ED data with a resolution as low as ca. 3.78 Å. The generality of this strategy was further verified for different phases of COF-300. This study demonstrates a viable strategy for structure solution of COF materials from 3D-ED data of limited resolution, which may facilitate the discovery of new COF materials in the future.  相似文献   

10.
The molecular structure of tert-butylazide has been determined by gas-phase electron diffraction and quantum chemical calculations. The HF/6-31G* and B3LYP/6-31G** calculations yielded near C s symmetry for the tert-butyl group, anti conformation of the (C)N—N bond with respect to one of the bonds, and an essentially free rotation around the bond with a 0.34 kcal/mol energy difference between syn and anti conformations of the CNNN moiety, the anti being the more stable form. The electron diffraction analysis was carried out by modeling a mixture of conformational isomers, generated by rotating the terminal nitrogen of the azide group, using a computed rotational potential. The data are consistent with C s symmetry for the tert-butyl group. The bond, however, was found to be rotated out of the anti position, with respect to one of the bonds, by 12.5(12)°. The electron diffraction analysis yielded the following bond lengths (r g), bond angles, and torsional angles: , .  相似文献   

11.
12.
13.
The saturated vapors of praseodymium and holmium tribromides were investigated for the first time by electron diffraction with mass spectral monitoring at 1100(10) and 991(10) K. It is established that the molecules have a pyramidal effective configuration with bond angles Br–Pr–Br = 114.7(10)° and Br–Ho–Br = 115.3(11)°. Given the low deformation vibration frequencies of lanthanide tribromide molecules, the insignificant pyramidality of the rg configuration may correspond to the planar equilibrium geometry of D3h symmetry for the molecules. The internuclear distances rg(Pr–Br) = 2.696(6) and rg(Ho–Br) = 2.594(5) point to the lanthanide compression effect. The vibration frequencies of PrBr3 and HoBr3 molecules were estimated from electron diffraction data.  相似文献   

14.
The molecular structure of ortho-fluoronitrobenzene (o-FNB) has been investigated by gas-phase electron diffraction and ab initio MO calculations. The geometrical parameters and force fields of o-FNB were calculated by ab initio and DFT methods. The obtained force fields were used to calculate vibrational amplitudes required as input parameters in an electron diffraction analysis. Within the experimental error limits, the geometrical parameters obtained from the gas-phase electron diffraction analysis are mostly in agreement with the results obtained from the ab initio calculations. The main results are: the molecular geometry of o-FNB is nonplanar with a dihedral angle about C–N of 38(3)°. The r g (C–F) bond is shortened to 1.307(13) Å in comparison with r g (C–F) = 1.356(4) Å in C6H5F.  相似文献   

15.
Gas-phase electron diffraction using quantum-chemical calculations was employed to study the molecular structure for 6,6'-bis(1,5-diazabicyclo[3.1.0]hexane). The conformation of the bicyclic fragment is boat or anti relative to the exocyclic bond.  相似文献   

16.
The development of new methods to analyze and determine molecular structures parallels the ability to accelerate synthetic research. For many decades, single‐crystal analysis by X‐ray diffraction (SXRD) has been the definitive tool for structural analysis at the atomic level; the drawback, however, is that a suitable single crystal of the analyte needs to be grown. The recent innovation of the crystalline sponge (CS) method allows the microanalysis of compounds simply soaked in a readily prepared CS crystal, thus circumventing the need to screen crystallization conditions while also using only a trace amount of the sample. In this context, electron diffraction for the structure determination of small molecules is discussed as potentially the next big development in this field.  相似文献   

17.
After numerous attempts over the last seven decades to obtain a structure for the simple, highly symmetric molecule tetranitromethane (C(NO2)4, TNM) that is consistent with results from diffraction experiments and spectroscopic analysis, the structure has now been determined in the gas phase and the solid state. For the gas phase, a new approach based on a four‐dimensional dynamic model for describing the correlated torsional dynamics of the four C−NO2 units was necessary to describe the experimental gas‐phase electron diffraction intensities. A model describing a highly disordered high‐temperature crystalline phase was also established, and the structure of an ordered low‐temperature phase was determined by X‐ray diffraction. TNM is a prime example of molecular flexibility, bringing structural methods to the limits of their applicability.  相似文献   

18.
Geometric parameters of the diphenylamine molecule were determined by gas-phase electron diffraction and quantum-chemical calculations. By gas-phase electron diffraction, the molecule has an asymmetric structure with torsion angles about N-C bonds of ?45.6(23)° and 173.4(46)°, which agrees with RHF/6-31G** calculations. Density functional theory (DFT) calculations at the B3LYP/6-31G** level of theory lead to a C 2 molecular conformation in the ground electronic state. The principal experimental geometric parameters are as follows: bond lengths: C-N 1.417(1), C-Cav 1.403(1) Å; and bond angles: CNC 123.9(5)°, and NCC 121.5° (assumed) and 116.4°.  相似文献   

19.
The molecular structure of BiBr3 was determined by gas-phase electron diffraction. The principal geometrical parameters are r (Bi—Br) = 2.567 ± 0.005 Å and 221D;Br—Bi—Br = 98.6 ± 0.2°. The force field of the molecule was obtained by a normal coordinate analysis utilizing both experimental vibrational frequencies and electron diffraction mean amplitudes of vibration. The variation of bond lengths and bond angles within the Group 15 trihalides is consistent with the expected trend, except that all bismuth trihalide bond angles appear to be somewhat large.  相似文献   

20.
We studied, and performed research for our Ph.D. degrees in the area of gas electron diffraction. Our mentor was Lawrence Brockway. a pioneer in this subject. At that time, research in gas electron diffraction was in its early stages of development. In 1941, the distinguished Peter Debye wrote a theoretical paper concerning gas electron diffraction which challenged ones capability to develop the necessary experimental equipment and to further advance the theoretical developments so as to greatly extend the science of gas electron diffraction. We carried these thoughts in mind when we joined the Naval Research Laboratory, where the opportunity to design and produce excellent equipment was readily available. In the course of pursuing this research area, one of the findings was the existence of non-negativity as a condition for the results of a diffraction experiment for gaseous substances. When we became interested in the field of crystal structure determination, the familiarity with non-negativity which was needed in the study of gases, led to a search for the necessary and sufficient condition for a Fourier series to be non-negative. The search was successful and has played an important part in crystal structure determination. Some early applications to complicated structures are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号