首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The oriented attachment (OA) mechanism has been investigated as an important process in the formation of anisotropic nanostructures such as depicted. The results showed that the control of a desired phase in this system may be attained by the control of OA mechanism through pH value, obtaining several morphologies.

  相似文献   


3.
Mixed transition metal oxides have emerged as promising electrode materials for electrochemical energy storage and conversion. To optimize the functional electrode properties, synthesis approaches allowing for a systematic tailoring of the materials’ composition, crystal structure and morphology are urgently needed. Here we report on the room-temperature electrodeposition of a ternary oxide based on earth-abundant metals, specifically, the defective cubic spinel ZnMnO3. In this unprecedented approach, ZnO surfaces act as (i) electron source for the interfacial reduction of MnO4 in aqueous solution, (ii) as substrate for epitaxial growth of the deposit and (iii) as Zn precursor for the formation of ZnMnO3. Epitaxial growth of ZnMnO3 on the lateral facets of ZnO nanowires assures effective electronic communication between the electroactive material and the conducting scaffold and gives rise to a pronounced 2-dimensional morphology of the electrodeposit forming – after partial delamination from the substrate – twisted nanosheets. The synthesis strategy shows promise for the direct growth of different mixed transition metal oxides as electroactive phase onto conductive substrates and thus for the fabrication of binder-free nanocomposite electrodes.  相似文献   

4.
"Bottom-up" methods to obtain nanocrystals usually result in metastable phases, even in processes carried out at room temperature or under soft annealing conditions. However, stable phases, often associated with anisotropic shapes, are obtained in only a few special cases. In this paper we report on the synthesis of two well-studied oxides-titanium and zirconium oxide-in the nanometric range, by a novel route based on the decomposition of peroxide complexes of the two metals under hydrothermal soft conditions, obtaining metastable and stable phases in both cases through transformation. High-resolution transmission electron microscopy analysis reveals the existence of typical defects relating to growth by the oriented attachment mechanism in the stable crystals. The results suggest that the mechanism is associated to the phase transformation of these structures.  相似文献   

5.
6.
Structural phase-controlled formation of binary Co(2)P and CoP nanocrystals is achieved by reacting cobalt(II) oleate with trioctylphosphine. In the absence of oleylamine, Co(2)P nanowires are formed at both 290 and 320 °C. In the presence of oleylamine, Co(2)P nanorods are formed at 290 °C, and CoP nanorods are formed at 320 °C. With the simultaneous reaction of iron(III) oleate and cobalt(II) oleate with trioctylphosphine in the presence of oleylamine, ternary Co(2)P-type cobalt-iron phosphide nanostructures are produced at both 290 and 320 °C, corresponding to rice-shaped Co(1.5)Fe(0.5)P nanorods and split Co(1.7)Fe(0.3)P nanostructures, respectively. The controlled incorporation of iron into cobalt phosphide can alter the magnetic properties from paramagnetic binary Co(2)P to ferromagnetic Co(2)P-type ternary cobalt-iron phosphide nanostructures. Meanwhile, the time-dependent morphological evolution from small nanodots/nanorods, through seeded growth to unique split nanostructures is demonstrated in one-pot reaction at 320 °C.  相似文献   

7.
Uniform CeO(2) nanoflowers were synthesized by rapid thermolysis of (NH(4))(2)Ce(NO(3))(6) in oleic acid (OA)/oleylamine (OM), by a unique 3D oriented-attachment mechanism. CeO(2) nanoflowers with controlled shape (cubic, four-petaled, and starlike) and tunable size (10-40 nm) were obtained by adjusting the reaction conditions including solvent composition, precursor concentration, reaction temperature, and reaction time. The nanoflower growth mechanism was investigated by in situ electrical conductance measurements, transmission electron microscopy, and UV/Vis spectroscopy. The CeO(2) nanoflowers are likely formed in two major steps, that is, initial formation of ceria cluster particles capped with various ligands (e.g., OA, OM, and NO(3) (-)) via hydrolysis of (NH(4))(2)Ce(NO(3))(6) at temperatures in the range 140-220 degrees C, and subsequent spontaneous organization of the primary particles into nanoflowers by 3D oriented attachment, due to a rapid decrease in surface ligand coverage caused by sudden decomposition of the precursor at temperatures above 220 degrees C in a strong redox reaction. After calcination at 400 degrees C for 4 h the 33.8 nm CeO(2) nanoflowers have a specific surface area as large as 156 m(2) g(-1) with high porosity, and they are highly active for conversion of CO to CO(2) in the low temperature range of 200-400 degrees C. The present approach has also been extended to the preparation of other transition metal oxide (CoO, NiO, and CuO(x)) nanoflowers.  相似文献   

8.
The classical model of particle coagulation on colloids is revisited to evaluate its applicability on the oriented attachment of nanoparticles. The proposed model describes well the growth behavior of dispersed nanoparticles during the initial stages of nanoparticle synthesis and during growth induced by hydrothermal treatments. Moreover, a general model, which combines coarsening (i.e., Ostwald ripening) and oriented attachment effects, is proposed as an alternative to explain deviations between experimental results and existing theoretical models.  相似文献   

9.
10.
11.
12.
Alpha-Ni(OH)(2) nanobelts, nanowires, short nanowires, and beta-Ni(OH)(2) nanoplates have been successfully prepared in high yields and purities by a convenient hydrothermal method under mild conditions from very simple systems composed only of NaOH, NiSO(4), and water. It has been found that the ratio of NaOH to NiSO(4) not only affects the morphology of the Ni(OH)(2) nanostructures, but also determines whether the product is of the alpha- or beta-crystal phase. A notable finding is that porous NiO nanobelts were produced after exposure of the Ni(OH)(2) products to an electron beam for several minutes during transmission electron microscopy (TEM) observations. Another unusual feature is that rectangular nanoplates with many gaps were obtained. Furthermore, porous NiO nanobelts, nanowires, and nanoplates could also be obtained by annealing the as-prepared Ni(OH)(2) products. A sequence of dissolution, recrystallization, and oriented attachment-assisted self-assembly of nanowires into nanobelts is proposed as a plausible mechanistic interpretation for the formation of the observed structures. The method presented here possesses several advantages, including high yields, high purities, low cost, and environmental benignity. It might feasibly be scaled-up for industrial mass production.  相似文献   

13.
Ultrathin ZnSe nanorods in the cubic phase have been synthesized by the reaction of selenium and zinc oleate for 30 min at 240 °C. These nanorods showed an average diameter of 2.4 nm, which is much smaller than the Bohr size of bulk ZnSe. Thus, they exhibited a remarkable quantum size effect in terms of their optical properties. The formation of the ultrathin nanorods could be attributed to the oriented attachment mechanism, which was supported by the structure of the nanorods and the control experiments. The ultrathin nanorods were transferred into an aqueous solution by ligand exchange. The performance of these nanorods as a catalyst was examined, using the photodegradation of methyl orange as a model reaction. It was found that the ultrathin nanorods possessed better photocatalytic activities than conventional ones.  相似文献   

14.
Based on the phase diagram of CoO–V2O5 system, single crystals of Co2V2O7 are grown using V2O5 as self-flux at a slow cooling rate. The quality of grown crystals is analyzed by X-ray powder diffraction and electron probe microanalysis techniques. Magnetic properties are investigated by means of susceptibility, magnetization, and heat capacity measurements. Our experimental results suggest that Co2V2O7 is a three-dimensional antiferromagnet, in which two magnetic transitions may occur at low temperature and a spin-flop-like transition may occur at the applied field along the b-axis. By contrast to Ni2V2O7, it is suggested that similar and different magnetic properties may arise from their similar crystal structures and different magnetic ions, respectively.  相似文献   

15.
Well-aligned zinc oxide microrod and microtube arrays with high aspect ratios were fabricated on zinc foil by a simple solution-phase approach in an aqueous solution of ethylenediamine (en). The shape of the ZnO microstructures can be easily modulated from rods to tubes by adding cetyl trimethyl ammonium bromide (CTAB) into the reaction system. Control experiments demonstrate that some reaction parameters, such as the concentration of ethylenediamine, the kind of surfactant, reaction time, and the temperature, all have direct influences on the morphology of the products. Based on the early structure arising from arrested growth (nanosheets), a reasonable mechanism for the growth of ZnO microrods and microtubes has been proposed. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence emission.  相似文献   

16.
17.
We report the synthesis of single‐crystalline and near‐monodispersed NaMF3 (M=Mn, Co, Ni, Mg), LiMAlF6 (M=Ca, Sr), and NaMgF3:Yb,Er nanocrystals (quasisquare nanoplates, nanorods, and nanopolygons) by the cothermolysis of multiple trifluoroacetates in hot combined organic solvents (oleic acid, oleylamine, and 1‐octadecene). The nanocrystals were characterized by XRD, TEM, superconductive quantum interference device (SQUID), and upconversion luminescence spectroscopy. By regulating the polarity of the dispersant, the NaMF3 (M=Mn, Co, Ni) nanoplates were partially aligned to form nanoarrays on copper TEM grids. The sizes of the NaMF3 nanocrystals were easily tuned by the use of proper synthetic conditions such as reaction temperature and time and solvent composition. On the basis of a series of experiments in which the reaction conditions were varied, together with GC–MS and FTIR analysis, the reaction pathways for the formation of these nanocrystals from trifluoroacetate precursors were proposed. The magnetic measurements showed that the differently sized NaMnF3 square plates displayed interesting weak ferromagnetic behavior on the nanometer scale. The strong red upconversion luminescence emitted from the NaMgF3:Yb,Er nanorods under 980‐nm near‐IR laser excitation suggests that NaMgF3 may be a good candidate host material for red upconversion luminescence.  相似文献   

18.
We report the development of a facile method for the synthesis of Ag(2)O crystals with systematic shape evolution from cubic to edge- and corner-truncated cubic, rhombicuboctahedral, edge- and corner-truncated octahedral, octahedral, and hexapod structures by mixing AgNO(3), NH(4)NO(3), and NaOH at molar ratios of 1:2:11.8. A sufficient volume of NaOH solution was first added to a mixture of AgNO(3) and NH(4)NO(3) solution to promote the formation of Ag(NH(3))(2)(+) complex ions and the growth of Ag(2)O nanocrystals with good morphological control. The crystals are mostly submicrometer-sized. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization has been performed to determine the crystalline surface facets. A band gap value of approximately 1.45 eV has been found for the octahedral Ag(2)O crystals. By changing the molar ratios of AgNO(3)/NH(4)NO(3)/NaOH to 1:2:41.8, corner-depressed rhombicuboctahedra and elongated hexapods were obtained as a result of enhanced crystal growth along the [100] directions. Smaller nanocubes with average sizes of approximately 200 and 300 nm and octapods can also be prepared by adjusting the reagent molar ratios and their added volumes. Both the octahedra and hexapods with largely silver atom-terminated {111} surface facets responded repulsively and moved to the surface of the solution when dispersing in a solution of positively charged methylene blue, but can be suspended in a negatively charged methyl orange solution. The cubes and octapods, bounded by the {100} faces, were insensitive to the molecular charges in solution. The dramatic facet-dependent surface properties of Ag(2)O crystals have been demonstrated.  相似文献   

19.
对晶体生长机制、动力学与微结构衍化的认识是实现纳米材料的尺寸和形貌可控制备的基础.以表面溶解沉积为特征的奥斯特瓦尔德熟化(0R)理论常用来解释传统的晶体生长过程.在该生长模式下,纳米晶体的生长呈现出小颗粒溶解而大颗粒逐渐长大的特征.在纳米材料体系,近来还发现了一种重要的新的晶体生长模式——“取向接合(OA)”机制,在该机制下,两个晶格取向一致的初级纳米颗粒可通过直接接合和结构调整,从而长成一个新的晶体.这一机制已被证实在许多纳米材料体系中广泛存在,并对所合成的纳米材料的形貌、微结构具有非常显著的影响,在构筑新型纳米结构方面具有潜在的优势.本文我们首先回顾了OA生长机制的认识历程和这一机制对材料科学的重大意义;进而,基于我们的研究工作系统介绍了OA生长动力学模型的建立与发展,进一步阐述了这一机制的微观过程及其对材料内部缺陷的特殊影响,深入地分析和讨论了表面包裹的强弱、表面作用的性质对OR机制和OA机制的抑制和调控作用;基于上述表面包裹可调控纳米材料的生长机制的认识,我们结合近期研究结果,从动力学角度分析了量子点的生长机制与其发光特性的内在关联,阐明了表面包裹调控量子点的发光性质的本质原因,为制备不同发光特征的量子点及理解其发光性质衍化规律提供了重要的理论指引.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号