首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Phase equilibria being established in the solid state in the system V2O5?Fe8V10W16O85 were examined by X-ray phase powder diffraction and DTA. It has been found that the system of interest is a real two-component system with an eutectic temperature 620±5°C.  相似文献   

2.
Phase equilibria up to the solidus line in the system Fe2O3?Fe8V10W16O85 were determined by means of X-ray phase powder diffraction and differential thermal analysis. This system is one of the intersections of the three-component system Fe2O3?V2O5?WO3. The studies revealed that this is not a real binary system, even in the solid state.  相似文献   

3.
Phase equlibria in the solid state in the system Fe2WO6?Fe8V10W16O85 were studied by means of X-ray phase powder diffraction and differential thermal analysis, This system is one of the intersections of the three-component system Fe2O3?V2O5?WO3. The investigation demonstrated that the system is not a real two-component system even below the solidus line.  相似文献   

4.
The reaction mechanism of the synthesis of Fe8V10W16O85 was studied by means of XRD, IR spectroscopy and DTA techniques. It was found that the intermediate in the reaction may be either FeVO4 or FeVO4 admixed with an unidentified phase X, depending on the reaction temperature. The IR spectrum of the phase Fe8V10W16O85 is reported for the first time. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Solid solution phases of a formula Fe8V10W16–xMoxO85 where 0≤x≤4, have been obtained, possessing a structure of the compound Fe8V10W16O85. It was found on the base of XRD and DTA investigations that these solution phases melted incongruently, with increasing the value of x, in the temperature range from 1108 (x=0) to 1083 K (x=4) depositing Fe2WO6 and WO3. The increase of the Mo6+ ions content in the crystal lattice of Fe8V10W16O85 causes the lattice parameters a=b contraction with cbeing almost constant. IR spectra of the Fe8V10W16–xMoxO85 solid solution phases have been recorded.  相似文献   

6.
A phase diagram of the V2O5–Fe8V10W16O85 system were carried out using XRD and DTA methods. In addition, an indexing of Fe8V10W16O85 powder diffraction pattern was made and its basic crystallographic parameters were determined. Finally, the phase was studied using IR spectroscopy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Phase diagrams in the subsolidus area of the systems FeVO4 - CdO and FeVO4 - Cd2V2O7 have been deduced using the results of XRD and DTA analyses. On the basis of these diagrams and some additional verifying research, a projection of the subsolidus area of the CdO - V2O5 - Fe2O3 system onto the plane that comprises the components’ concentration triangle has been presented. The H-type phase is the only phase formed in this system. It co-exists at equilibrium with other phases in six subsidiary subsystems.   相似文献   

8.
The phase equilibria established up to the solidus line in the system Fe2V4O13−WO3, one of the intersections of the three-component system Fe2O3−V2O5−WO3, have been studied. The system appears not to be a real two-component system.
Zusammenfassung Es wurde eine Untersuchung des Phasengleichgewichtes durchgeführt, welches bezüglich der Solidus-Linie im System Fe2V4O13−WO3, einer der Zwischenbereiche im Dreikomponentensystem Fe2O3−V2O5−WO3, nachgewiesen wurde. Dieses System scheint kein echtes Zweikomponentensystem zu sein.
  相似文献   

9.
Ferrous gluconate dihydrate (FeC12H22O14⋅2H2O), was prepared and its thermal decomposition was studied by means of simultaneous thermal analysis, supplemented with a two probe d.c. electrical conductivity measurements under the atmospheres of static air, dynamic air and dynamic nitrogen. Under all the atmospheres final product was found to be α-Fe2O3 with FeO, γ-Fe2O3, Fe3O4 etc. as probable intermediates. γ-Fe2O3 was formed under the atmosphere of dynamic air containing water vapour. γ-Fe2O3 thus synthesised was characterised for its structure, morphology, thermal and magnetic behaviour. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Spindle-shaped α-FeOOH particles were synthesized using the chemical coprecipitation method in Fe(CO3)x(OH)2(?x) suspensions system by adding metallic ions. The spindle-shaped γ-Fe2O3 particles were obtained by dehydration of α-FeOOH, and subsequent reduction and oxidation. Its thermal stability was investigated by differential thermal analysis (DTA). It was found that the transition temperature of γ-Fe2O3→α-Fe2O3 of samples doped with metallic ions is higher than that of the pure γ-Fe2O3 and increasing with increase of the size of the metallic ions, and γ-Fe2O3 by doping with two or more different metallic ions together has even higher thermal stability. The origin of the improved thermal stability was discussed. Additionally, the magnetic properties of γ-Fe2O3 were measured.  相似文献   

11.
The Fe3O4-Prussian blue (PB) nanoparticles with core-shell structure have been in situ prepared directly on a nano-Fe3O4-modified glassy carbon electrode by cyclic voltammetry (CV). First, the magnetic nano-Fe3O4 particles were synthesized and characterized by X-ray diffraction. Then, the properties of the Fe3O4-PB nanoparticles were characterized by CV, electrochemical impedance spectroscopy, and superconducting quantum interference device. The resulting core-shell Fe3O4-PB-modified electrode displays a dramatic electrocatalytic ability toward H2O2 reduction, and the catalytic current was a linear function with the concentration of H2O2 in the range of 1 × 10−7~5 × 10−4 mol/l. A detection limit of 2 × 10−8 (s/n = 3) was determined. Moreover, it showed good reproducibility, enhanced long-term stability, and potential applications in fields of magnetite biosensors.  相似文献   

12.
N2O decomposition was examined over a series of Al2O3-Fe2O3 mixed oxidic solids with composition ranging from 0 to 100% of Fe2O3. The catalytic activity of the solids runs parallel to the number of atoms of iron in the Al2−x FexO3 solid solution phase. Two compensation effects are present. The first corresponds to catalysts rich in alumina, and the second one to catalysts rich in hematite. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Reactivity of FeVO4 towards Ni2V2O7 and Ni3V2O8 in the solid state was investigated. On the base of XRD and DTA results, phase diagrams in subsolidus area of the FeVO4-Ni2V2O7 and FeVO4-Ni3V2O8 intersections of the ternary system NiO-V2O5-Fe2O3 have been worked out and the phase diagram of this ternary system in subsolidus area in the whole component concentration range has been verified. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A V2O5/Al2O3 mixed solids sample was prepared with a molar ratio of 0.41 Na2O (4 and 10 mol%) was added in the form of sodium nitrate prior to calcination in air in the temperature range 500–1000C. Solid-solid interactions between V2O5 and Al2O3 were studied using DTA and TG curves and their derivatives together with XRD techniques.The results obtained showed that Na2O interacted with V2O5 at temperatures starting from 500C to yield a sodium/vanadium compound, Na0.3V2O5 which remained stable and decomposed in part by heating at 1000C. V2O5 exists in orthorhombic and monoclinic forms in the case of pure mixed solids and those containing 4 mol% of Na2O and preheated at 500C, and in monoclinic form in the case of the mixed solid doped with 10 mol% of Na2O.Heating of pure and doped mixed oxide solids at 650C resulted in the conversion of most of the V2O5 into AlVO4. Doping with sodium oxide enhanced the solid-solid interaction between V2O5 and Al2O3 at 650C to produce AlVO4. The produced AlVO4 decomposed completely on heating at 700C to form -Al2O3 and V2O5, (orthorhombic and monoclinic forms).The presence of Na2O was found to decrease the relative intensity of the diffraction lines of -Al2O3 (corundum) produced at 750C which indicated some kind of hindrance of the crystallization process.Heating of pure and doped mixed solids at 1000C resulted in a further crystallization of acorundum together with V2O5 and sodium vanadate, Na0.3V2O5. However, the intensities of diffraction lines relative to those of the sodium vanadium compound were found to decrease markedly by heating at 1000C, indicating partial thermal decomposition into vanadium and aluminium oxides.  相似文献   

15.
Fe2O3, Fe3O4 films have been prepared from Fe(OCH2CH(CH3)2)3–(CH3)2CHCH2OH–2.2′-diethanola- mine (DEA)–poly(vinylpyrrolidone) (PVP) solutions by the spin-(SC) and dip-coating (DC) technique on SiO2 and Si substrates. The maximum film thickness achieved without crack formation has been increased by incorporation of PVP (relative molecular weights 40000 and 360000) into the precursor solution. The stability of the precursor solutions was remarkably increased by addition of DEA. Compact, dense, and crack-free Fe2O3 films with thicknesses 900 nm (DC), 450 nm (SC), have been obtained via single-step deposition cycle. Higher-molecular-weight PVP has been more effective in increasing the thickness. The minimum concentration of DEA, which results in pronounced increase of solutions stability, is about R P (n(DEA)/n(Fe) = 0.1). The high content of carboneous residue in the pyrolysed Fe2O3 films promotes the formation of Fe3O4 films via reduction in a gas flow of H2/N2 gas mixture. Microstructure, surface morphology, and magnetic properties of the films have been also investigated using SEM, AFM, and SQUID, respectively.  相似文献   

16.
The structure of glasses in the Fe2O3-V2O5 system in the 0–50 mol% Fe2O3 range is studied by IR-spectroscopy. It is found that the introduction of Fe2O3 favours the transformation of the VO5-groups into VO4 ones. This effect may be shown with the aid of IR-spectra, owing to the fact that these glasses are characterized by two high-frequency bands at 1020 and 930 cm–1. The first is determined by the vibrations of the short V=O nonbridging bonds in the VO5-groups, while the second is assigned to the vibrations of the V—O-bonds in deformed VO4-tetrahedra.
IR-spektroskopische Strukturuntersuchung von Gläsern des Systems Fe2O3-V2O5
Zusammenfassung Die Struktur von Gläsern des Systems Fe2O3-V2O5 in dem Bereich von 0–50 Molprozent Fe2O3 wurde mit Hilfe der IR-Spektroskopie untersucht. Zusatz von Fe2O3 begünstigt die Umwandlung der VO5- in VO4-Gruppen. Das kann in den IR-Spektren durch zwei Banden bei 1020 und 930 cm–1 festgestellt werden. Die erste wird durch Schwingungen der kurzen V=O-Nichtbrücken-bindungen in den VO5-Gruppen verursacht, die zweite wird auf Schwingungen der V—O-Bindungen in dem deformierten VO4-Tetraeder zurückgeführt.
  相似文献   

17.
A sol-gel procedure was used to cover Fe3O4 nanoparticles with SiO2 shell, forming a core/shell structure. The core/shell nanocomposites were synthesized by a two-step process. First, Fe3O4 nanoparticles were obtained through co-precipitation and dispersed in aqueous solution through electrostatic interactions in the presence of tetramethylammonium hydroxide (TMAOH). In the second step, Fe3O4 was capped with SiO2 generated from the hydrolyzation of tetraethyl orthosilicate (TEOS). The structure and properties of the formed Fe3O4/SiO2 nanocomposites were characterized and the results indicate that the Fe3O4/SiO2 nanocomposites are superparamagnetic and are about 30 nm in size. Bioconjugation to IgG was also studied. Finally, the mechanism of depositing SiO2 on magnetic nanoparticles was discussed.  相似文献   

18.
采用微乳法合成出氧化铁的前驱体——纳米β-FeOOH, 分别以β-FeOOH与添加剂壬基酚聚氧乙烯醚(NP-4)以物质量的比(n)为4, 5, 100添加NP-4, 混合煅烧. 采用拉曼光谱分析了样品中炭含量及分布, 并且用透射电镜观测产物的形貌和粒径, 采用磁强计观测产物磁性的变化. 结果得出, 对n=5或破乳所得凝胶煅烧, 所得样品皆为分散均匀的四方形颗粒状, 且为磁性明显增强的纳米氧化铁γ-Fe2O3. 还分别讨论了样品中炭含量以及颗粒形状对比饱和磁化强度σs、矫顽力、矩形比的影响.  相似文献   

19.
The reactivity of Zn3 V2 O8 towards ZnMoO4 was investigated by using DTA and XRD methods. A new compound of the formula Zn2.5 VMoO8 was found. It crystallises in an orthorhombic system. The melting temperature was determinated to be 845±5°C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Diol capped γ-Fe2O3 nanoparticles are prepared from ferric nitrate by refluxing in 1,4-butanediol (9.5 nm) and 1,5-pentanediol (15 nm) and uncapped particles are prepared by refluxing in 1,2-propanediol followed by sintering the alkoxide formed. X-ray diffraction (XRD) shows that all the samples have the spinel phase. Raman spectroscopy shows that the samples prepared in 1,4-butanediol and 1,5-pentanediol and 1,2-propanediol (sintered at 573 and 673 K) are γ-Fe2O3 and the 773 K-sintered sample is Fe3O4. Raman laser studies carried out at various laser powers show that all the samples undergo laser-induced degradation to α-Fe2O3 at higher laser power. The capped samples are however, found more stable to degradation than the uncapped samples. The stability of γ-Fe2O3 sample with large particle size (15.4 nm) is more than the sample with small particle size (10.2 nm). Fe3O4 having a particle size of 48 nm is however less stable than the smaller γ-Fe2O3 nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号