首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Single- and double-stranded calf thymus DNA and two polynucleotides (0.4 mM) were studied in aqueous solution at pH approximately 7 using pulsed, 20 ns laser excitation at 193 nm. Monophotonic ionization of the nucleic acids is suggested from the linear dependences of the concentration of ejected electrons and the number of single- and double-strand breaks (ssb, dsb, respectively) on laser intensity (IL) in the range (0.2-3) x 10(6) W cm-2. The quantum yields of formation of hydrated electrons (phi e-) and ssb and dsb (phi ssb and phi dsb) are therefore independent of IL. In contrast, under 248 nm excitation these quantum yields increase linearly with IL under otherwise comparable conditions. Nevertheless, several effects and mechanistic implications are analogous using lambda exc = 193 and 248 nm. For polycytidylic acid, poly(C), in Ar-saturated solution for example, the efficiency of ssb per radical cation (eta RC = phi ssb/phi e-) is similar to the efficiency of ssb per OH radical (eta OH). For polyadenylic acid, poly(A), and single- and double-stranded DNA eta RC (lambda exc = 193 nm) is significantly smaller than eta OH. The ratio phi ssb (N2O)/phi ssb (Ar) is approximately 2 for poly(C), approximately 4 for poly(A) approximately 10 for DNA; the conversion of hydrated electrons into OH radicals in N2O-saturated solution and smaller eta RC than eta OH values in the case of DNA account for these results. For double-stranded DNA phi dsb does not depend on IL but increases linearly with the dose, indicating an accumulative effect of two ssb to generate one dsb. The critical distance for this event is 60-85 phosphoric acid diester bonds.  相似文献   

2.
The 355 nm laser flash photolysis of nalidixic acid at pH 9.2 leads to the formation of the nalidixate anion triplet state (absorption lambda max = 620 nm; 5700 less than or equal to epsilon T less than or equal to 9000 M-1cm-1; 0.6 less than or equal to phi T less than or equal to 1). The first order triplet state decay (kT = 7.7 x 10(3) s-1) is accompanied by a diffusion controlled triplet-triplet annihilation. Oxygen efficiently quenches the triplet state (k = 3.2 x 10(9) M-1s-1). The nalidixate radical dianion (absorption lambda max = 650 nm; epsilon = 3000 M-1cm-1) is produced by the diffusion controlled reductive quenching of the triplet state by tryptophan and tyrosine. The superoxide anion (O2-.) is produced by diffusion controlled reaction of the radical dianion with oxygen. The O2-. is characterized by its reactions with ferricytochrome c and superoxide dismutase. The physiological form of nalidixic acid is thus a good Type I and Type II photosensitizer.  相似文献   

3.
Double-stranded (ds) calf thymus DNA (0.4 mM), excited by 20 ns laser pulses at 248 nm, was studied in deoxygenated aqueous solution at room temperature and pH 6.7 in the presence of a sodium salt (10 mM). The quantum yields for the formation of hydrated electrons (phi c-), single-strand breaks (phi ssb) and double-strand breaks (phi dsb) were determined for various laser pulse intensities (IL). phi c- and phi ssb increase linearly with increasing IL; however, phi ssb has a tendency to reach saturation at high IL (greater than 5 X 10(6) Wcm-2). The ratio phi ssb/phi c-, representing the number of ssb per radical cation, is about 0.08 at IL less than or equal to 5 X 10(6) Wcm-2. For comparison, the number of ssb per OH radical reacting with dsDNA is 0.22. On going from argon to N2O saturation, phi ssb and phi dsb become larger by factors of approximately 5 and 10-15, respectively. This enhancement is produced by attack on DNA bases by OH radicals generated by N2O-scavenging of the photoelectrons. While phi ssb is essentially independent of the dose (Etot), phi dsb depends linearly on Etot in both argon- and N2O-saturated solutions. The linear dependence of phi dsb implies a square dependence of the number of dsb on Etot. This portion of dsb formation is explained by the occurrence of two random ssb, generated within a critical distance (h) in opposite strands. For both argon- and N2O-saturated solutions h was found to be of the order of 40-70 phosphoric acid diester bonds. On addition of electron scavengers such as 2-chloroethanol (or N2O plus t-butanol), phi dsb is similar to that in neat, argon-saturated solutions. Thus, hydrated electrons are not involved in the chemical pathway leading to laser-pulse-induced dsb of DNA.  相似文献   

4.
Release of bases form calf thymus DNA and three polynucleotides, induced by 20 ns excitation at 193 nm in aqueous solution at pH 7, was detected by HPLC. The quantum yields of formation of free bases (phi B) from double-stranded DNA (0.4 mM) are independent of intensity, indicating a one-quantum mechanism of N-glycosidic bond cleavage. The phi B values increase in the order guanine, thymine, adenine, cytosine, the latter being phi C approximately 7 x 10(-4) for double-stranded DNA under Ar and O2. The larger phi B values in N2O-saturated solution, e.g., phi C = 1.2 x 10(-3), are ascribed to additional base release via OH-adduct radicals. The phi B values of homopolynucleotides increase in the order poly(G), poly(A) and poly(C), e.g. phi C = 7 x 10(-3) under Ar, as do the efficiencies for base release per radical cation (eta B). A comparison of the eta B values with the efficiencies of single-strand breakage for poly(C), poly(A) and DNA shows a similar trend; both are markedly larger for pyrimidines than for purines. Pathways to undamaged bases, initiated from base radical cations, are proposed.  相似文献   

5.
Nanosecond (lambda exc = 266, 355 and 532 nm) and picosecond (lambda exc = 355 nm) laser flash photolysis of hematoporphyrin (Hp) was performed in neutral (pH 7.4) and alkaline (pH 12) aqueous solution, as well as in the presence of 0.1% Triton X-100. The dependence of the yield of photoproduced hydrated electrons (e-aq) on laser pulse energy was studied over a wide range of energies (0.2 to greater than 1000 mJ cm-2). The results show that e-aq are predominantly formed in a two-photon process at lambda exc = 266 and 355 nm. One-photon quantum yields are higher at lambda exc = 266 nm than at lambda exc = 355 nm. Both one-photon and two-photon pathways are less efficient at higher Hp concentration, reflecting the influence of Hp self-aggregation. Two-photon e-aq formation is more efficient when 30 ps pulses are used for excitation, as compared to 10 ns pulses. No e-aq could be detected at lambda exc = 532 nm. Nanosecond pulse-induced transient spectra obtained at pH 7.4 are also discussed.  相似文献   

6.
Irradiation of pH 7, aqueous solutions of 5-bromouracil (BU) in the presence of cysteine peptide-like derivatives at 308 nm using a XeCl excimer laser yielded initial formation of only uracil (U) and the corresponding cystine derivative. Continued irradiation yielded an S-uracilylcysteinyl adduct as well as additional U and cystine derivative. Similar irradiation of a solution of BU and a cystine derivative yielded initial formation of U and the S-uracilylcysteinyl adduct. Formation of these products as well as secondary products of uracil photochemistry was observed upon irradiation of the respective solutions with 254 nm light. With 308 nm laser excitation, U-Cys adduct formation and reduction of BU to U are proposed to occur via initial electron transfer from the disulfide of the cystine derivative to triplet BU. The quantum yield of BU destruction with 308 nm excitation in the presence of cystine derivative is 1.1 X 10(-3). Reaction of triplet BU with the cysteine derivative does not yield U-Cys adduct but U and cystine derivative. A possible byproduct of reduction of triplet BU to U by a cysteinyl residue in a protein BU-DNA complex is a sulphenyl bromide which might yield a protein-DNA crosslink via nucleophilic substitution on sulfur by a nucleophilic site in DNA.  相似文献   

7.
The photochemistry of maleimide in aqueous solution is governed by the coexistence of up to three different triplet states, the keto triplet (lambda(max)=250, 330 nm, lambda(min)=290 nm, pK(a)=4.4+/-0.1, tau=5 micros), the deprotonated or enolate triplet (lambda(max)=360, 260 nm, lambda(min)=320 nm, shoulder at 370-380 nm) and a dimer triplet. This biradical is formed by the addition of the keto triplet to the double bond of a ground state maleimide in competition with electron transfer, (k( (3)MI+MI)=2.6 x 10(9) dm(3) mol(-1) s(-1)). Its spectrum is identical to that of the maleimide H-adduct radical (lambda(max)=370-380 (broad), 255 nm (narrow), lambda(min)=290 nm) and its lifetime is 110 ns. While protolysis is confined to maleimide and aqueous solutions, the dimer triplet is also found in acetonitrile. Dimer triplet formation is also observed with N-ethylmaleimide. Time-resolved conductometry and buffer experiments were used to characterise excited state protolysis. Multi-wavelength "global analysis" of the time profiles allowed the separation of the transient spectra and study of the kinetics of the monomer and dimer triplets. The cyclobutane dimer yield (determined by GC) is independent of maleimide concentration. This indicates that the dimer triplet does not contribute significantly to the initiation of free-radical polymerisation. Time-dependent Hartree-Fock calculations agree with the experimental data and further confirm the proposed mechanisms.  相似文献   

8.
Abstract— The influence of nucleotides or polynucleotides on the photophysics and the photochemistry of tryptophan (Trp) derivatives has been investigated in aqueous solutions using the 265 nm laser flash photolysis technique. In solutions containing mixtures of N -acetyltryptophanamide and uridine monophosphate (UMP) or mercurated dUMP, the Trp triplet and the hydrated electron (eaq) are quenched at almost diffusion controlled rates by the nucleotides leading to uracil reduction. Lysyl-tryptophyl-α-lysine (Lys-Trp-Lys) forms stable complexes in solution with normal or mercurated poly(uridylic acid) [poly(U)]. In the Poly(rU)-Lys-Trp-Lys complex the Trp triplet state is completely quenched, whereas the Trp triplet formation quantum yield is enhanced in complexes with mercurated poly(U). In this last case, the 'heavy atom effect' is characterized by a shortening of the Trp triplet lifetime in agreement with low temperature experiments. Our results also show that photoionization of Trp does occur in the complexed state with both polymers. The eaq lifetime is however longer with the complexed than with the free peptide.  相似文献   

9.
Steady-state fluorescence has been used to study the excited singlet state of ofloxacin (OFLX) in aqueous solutions. Fluorescence emission was found to be pH dependent, with a maximum quantum yield of 0.17 at pH 7. Two pKa*s of around 2 and 8.5 were obtained for the excited singlet state. Laser flash photolysis and pulse radiolysis have been used to study the excited states and free radicals of OFLX in aqueous solutions. OFLX undergoes monophotonic photoionization from the excited singlet state with a quantum yield of 0.2. The cation radical so produced absorbs maximally at 770 nm with an extinction coefficient of 5000 +/- 500 dm3 mol-1 cm-1. This is confirmed by one-electron oxidation in the pulse radiolysis experiments. The hydrated electron produced in the photoionization process reacts with ground state OFLX with a rate constant of 2.0 +/- 0.2 x 10(10) dm3 mol-1 s-1, and the anion thus produced has two absorption bands at 410 nm (extinction coefficient = 3000 +/- 300 dm3 mol-1 cm-1) and at 530 nm. Triplet-triplet absorption has a maximum at 610 nm with an extinction coefficient of 11,000 +/- 1500 dm3 mol-1 cm-1. The quantum yield of triplet formation has been determined to be 0.33 +/- 0.05. In the presence of oxygen, the triplet reacts to form both excited singlet oxygen and superoxide anion with quantum yields of 0.13 and < or = 0.2, respectively. Moreover, superoxide anion is also formed by the reaction of oxygen with the hydrated electron from photoionization. Hence the photosensitivity due to OFLX could be initiated by the oxygen radicals and/or by OFLX radicals acting as haptens.  相似文献   

10.
During the aerobic reaction of soybean lipoxygenase with polyunsaturated fatty acids (linoleic, linolenic, and arachidonic acid) oxygen uptake is followed by excited carbonyl photoemission. The chemiluminescence yield of phi cl = 10(-10) photons/O2 molecule consumed is enhanced 2-3 orders of magnitude by the carbonyl sensitizers 9,10-dibromo-anthracene-2-sulfonate (kET tau 0 = 10(4) M-1; phi cl = 10(-8) photons/O2) and chlorophyll-a (kET tau 0 = 10(6) M-1; phi cl = 10(-7) photons/O2), respectively. alpha,beta-Saturated triplet excited carbonyls as from 1,2-dioxetane cleavage are discussed to arise from a secondary peroxidase/oxidase reaction with aldehydes formed in the course of enzymic lipid peroxidation. When 1 mM glutathione is added to the aerobic lipoxygenase/arachidonate reaction, carbonyl emission (375-455 nm) is replaced by intense red bands (630-645 nm and 695-715 nm) resembling the characteristic spectrum of (1 delta g)O2-singlet oxygen dimol-emission. The quantum yield (phi cl = 10(-8) photons/O2) remains unaffected by chlorophyll indicating that the red emission is independent of excited carbonyls. The effect of GSH is attributed to dioxetane interception and subsequent glutathione peroxidation generating 1O2 by electron transfer from the superoxide anion radical to a peroxysulfenyl radical.  相似文献   

11.
The photochemical reactions of cytosine (Cyt) and uracil (Ura) with ethylamine, an analog of the side chain of the amino acid lysine, have been studied. After irradiation of Cyt in aqueous ethylamine at lambda = 254 nm, N-(N'-ethylcarbamoyl)-3-aminoacrylamidine (Ia) and N-(N'-ethylcarbamoyl)-3-ethylaminoacrylamidine (Ib) were isolated as products, while irradiation of Ura gave N-(N'-ethylcarbamoyl)-3-aminoacrylamide (IIa) and N-(N'-ethylcarbamoyl)-3-ethylaminoacrylamide (IIb) as products. Studies in which Ia and IIa were incubated with ethylamine at various pH values indicate that Ib and IIb are secondary products produced via thermal reactions of Ia and IIa with ethylamine. Heating of Ia and Ib leads to ring closure with the resultant formation of 1-ethylcytosine; small amounts of 1-ethyluracil are also produced. Heating of IIa and IIb produces 1-ethyluracil as the sole product. Spectroscopic properties were determined for each of these opened ring products, as well as for N-(N'-ethylcarbamoyl)-3-amino-2-methylacrylamidine (III) and N-(N'-ethylcarbamoyl)-3-amino-2-methylacrylamide (IV). Quantum yield measurements showed that Ia was formed with a phi of 1.6 x 10(-4) at pH 9.8, while phi for formation of IIa was 7.2 x 10(-4) at pH 11.5. A profile of the relative quantum yield for formation of Ia, determined as a function of pH, showed that the maximum quantum yield occurs at around pH 9.5; the analogous profile for IIa shows a maximum quantum yield at pH 11.3 and above. Acetone sensitization does not produce Ia in the Cyt-ethylamine system, which indicates that the known triplet state of Cyt is not involved in reactions leading to this opened ring product.  相似文献   

12.
The absolute gas phase ultraviolet absorption spectra of trichlorovinylsilane and allyltrichlorosilane have been measured from 191 to 220 nm. Over this region the absorption spectra of both species are broad and relatively featureless, and their cross sections increase with decreasing wavelength. The electronic transitions of trichlorovinylsilane were calculated by ab initio quantum chemical methods and the observed absorption bands assigned to the A(1)A'<-- X[combining tilde](1)A' transition. The maximum absorption cross section in the region, at 191 nm, is sigma = (8.50 +/- 0.06) x 10(-18) cm(2) for trichlorovinylsilane and sigma = (2.10 +/- 0.02) x 10(-17) cm(2) for allyltrichlorosilane. The vinyl radical and the allyl radical are formed promptly from the 193 nm photolysis of their respective trichlorosilane precursors. By comparison of the transient visible absorption and the 1315 nm I atom absorption from 266 nm photolysis of vinyl iodide and allyl iodide, the absorption cross sections at 404 nm of vinyl radical ((2.9 +/- 0.4) x 10(-19) cm(2)) and allyl radical ((3.6 +/- 0.8) x 10(-19) cm(2)) were derived. These cross sections are in significant disagreement with literature values derived from kinetic modeling of allyl or vinyl radical self-reactions. Using these cross sections, the vinyl radical yield from trichlorovinylsilane was determined to be phi = (0.9 +/- 0.2) per 193 nm photon absorbed, and the allyl radical yield from allyltrichlorosilane phi = (0.7 +/- 0.2) per 193 nm photon absorbed.  相似文献   

13.
Abstract— The photochemical reactions of benzophenone and acetophenone with purine and pyrimidine derivatives in aqueous solutions have been investigated by flash photolysis and steady-state experiments. Upon excitation of these two ketones in aqueous solutions, two transient species are observed: molecules in their triplet state and ketyl radicals. The triplet state lifetimes are 65 μsec for benzophenone and 125 μsec for acetophenone. The ketyl radicals disappear by a second order reaction, controlled by diffusion. In the presence of pyrimidine derivatives, the triplet state is quenched and the ketyl radical concentration is decreased without any change in its kinetics of disappearance. Ketone molecules in their triplet state react with purine derivatives leading to an increase in the yield of ketyl radicals due to H-atom abstraction from the purines. Steady-state experiments show that benzophenone and acetophenone irradiated in aqueous solution at wavelengths longer than 290 nm undergo photochemical reactions. The rate of these photochemical reactions is increased in the presence of pyrimidine derivatives and even more in the presence of purine derivatives. Following energy transfer from the triplet state of benzophenone to diketopyrimidines, cyclobutane dimers are formed. The energy transfer rate decreases in the order orotic acid > thymine > uracil. Benzophenone molecules in their triplet state can also react chemically with pyrimidine derivatives to give addition photoproducts. All these results are discussed with respect to photosensitized reactions in nucleic acids involving ketones as sensitizers.  相似文献   

14.
Triplet-state properties of 1,4,8,11,15,18,22,25-octa-n-butoxyphthalocyanine and its zinc derivative were determined for the first time. The T1 state of the metal-free phthalocyanine was characterized by a short lifetime (tau T = 17 microseconds) and low quantum yield (phi T = 0.095), and quenching of the triplet by O2 occurred with a bimolecular rate constant (kT sigma = 1.3 x 10(8) M-1 s-1) that is indicative of an endogonic reaction. The zinc complex (ZnPc(OBu)8) was markedly better as a triplet photosensitizer with respect to both tau T (60 microseconds) and phi T (0.5). Quenching by O2 produced singlet oxygen with nearly 100% efficiency, and kT sigma (1.7 x 10(9) M-1s-1) was close to the spin-statistical diffusion-controlled limit. Phosphorescence measurements showed the energy of the T1 state of ZnPc(OBu)8 to be 100 kJ/mol, which is 6 kJ/mol above the 1 delta g state of O2. These photoproperties, together with Q-band absorption maxima in the mid-700 nm range indicate that metal-centered 1,4,8,11,15,18,22,25-octaalkoxyphthalocyanines have excellent potential as sensitizers in photodynamic therapy.  相似文献   

15.
The photophysical and photochemical properties of N-phthaloyl-methionine (1), S-methyl-N-phthaloyl-cysteine methyl ester (2) and N-phthaloyltranexamic acid (3) were studied by time-resolved UV/Vis spectroscopy, using laser pulses at 248 or 308 nm. The quantum yield of fluorescence is low (phi(f)< 10(-2)) for 1-3 in fluid and glassy media, whereas that of phosphorescence is large (0.3-0.5) in ethanol at - 196 degrees C. The triplet properties were examined in several solvents, at room temperature and below. The spectra and decay kinetics are similar, but the population of the pi(pi*) triplet state, as measured by T-T absorption, is much lower for 1 and 2 than for 3 or N-methyltrimellitimide (5') at ambient temperatures. The quantum yield (phi(delta)) of singlet molecular oxygen O2(1deltag) formation is substantial for 3 and 5' in several air- or oxygen-saturated solvents at room temperature, but small for 2 and 1. The quantum yield of decomposition is substantial (0.2-0.5) for 3 and small (<0.05) for 2 and 1. It is postulated that photoinduced charge separation in the spectroscopically undetectable 3n,pi* state may account for the cyclization products of 1 and 2. In aqueous solution, this also applies for 3, whereas in organic solvents cyclization involves mainly the lower lying 3pi,(pi*) state. Triplet acetone, acetophenone and xanthone are quenched by 1-3 in acetonitrile; the rate constant is close to the diffusion-controlled limit, but smaller for benzophenone. While the energy transfer from the triplet ketone occurs for 3, a major contribution of electron transfer to the N-phthalimide derivative is suggested for 1 and 2, where the radical anion of benzophenone or 4-carboxybenzophenone is observed in alkaline aqueous solution.  相似文献   

16.
Direct irradiation of 5-bromouracil (BU) in aqueous fluid solution in the presence of tryptophan (trp), tyrosine (tyr) or histidine (his) derivatives using a XeCl excimer laser at 308 nm yielded photocoupling of BU to the aromatic ring of each amino acid. Irradiation of BU at 308 nm most likely results in excitation of the n-φ* transition, intersystem crossing to the triplet manifold, and coupling via electron transfer from the aromatic amino acid. The coupling observed was regiospecific between the 5-position of uracil (U) and the 2-position of the indole and phenol rings and the 5-position of the imidazole ring of the respective amino acids. Quantum yields of photocoupling to BU ranged from 1 × 10-3 to 7 × 10-3 and paralleled known rates of electron transfer and ionization potentials of the aromatic rings. The photocoupling between BU and some of the aromatic amino acid peptide-like derivatives possibly mimics photocrosslinking of BU-DNA to associated proteins, a potentially useful photoreaction for studying nucleic acid-protein interactions. Formation of crosslinks of the type proposed here might be detected by the characteristic fluorescence emission of the uracil amino acid adducts.  相似文献   

17.
Abstract The photophysical properties of the fluoroquinolone antibiotic moxifloxacin (MOX) were investigated in aqueous media. MOX in water, at pH 7.4, shows two intense absorption bands at 287 and 338 nm (epsilon = 44 000 and 17 000 dm(3) mol(-1) cm(-1), respectively). The absorption and emission properties of MOX are pH-dependent, pK(a) values for the protonation equilibria of both the ground (6.1 and 9.6) and excited singlet states (6.8 and 9.1) of MOX were determined spectroscopically. MOX fluoresces weakly, the quantum yield for fluorescence emission being maximum (0.07) at pH 8. Phosphorescence from the excited triplet state in frozen ethanol solution has a quantum yield of 0.046. Laser flash photolysis and pulse radiolysis studies have been carried out to characterize the transient species of MOX in aqueous solution. On laser excitation, MOX undergoes monophotonic photoionization with a quantum yield of 0.14. This leads to the formation of a long-lived cation radical whose absorption is maximum at 470 nm (epsilon(470) = 3400 dm(3) mol(-1) cm(-1)). The photoionization process releases hydrated electron which rapidly reacts (k = 2.8 x 10(10) dm(3) mol(-1) s(-1)) with ground state MOX, yielding a long-lived anion radical with maximum absorption at 390 nm (epsilon(390) = 2400 dm(3) mol(-1) cm(-1)). The cation radical of MOX is able to oxidize protein components tryptophan and tyrosine. The bimolecular rate constants for these reactions are 2.3 x 10(8) dm(3) mol(-1) s(-1) and 1.3 x 10(8) dm(3) mol(-1) s(-1), respectively. Singlet oxygen sensitized by the MOX triplet state was also detected only in oxygen-saturated D(2)O solutions, with a quantum yield of 0.075.  相似文献   

18.
Abstract— Ultraviolet irradiation of 14C-uracil in aqueous solution results in the formation of hydrate and dimer photoproducts. The rate of dimerization increases with increasing uracil concentration, and decreases with increasing concentration of oxygen in solution. The kinetics are in agreement with a model previously proposed to account for the reactions, in which dimerization occurs by a reaction involving the triplet state of uracil, but hydration occurs from an excited singlet state. Oxygen reduces dimer formation by quenching the triplet. The quantum yield for intersystem crossing (ISC) to the triplet depends on the irradiation wavelength, increasing from 0.0014 at 280 nm to 0.016 at 230 nm. The ratio of rate constants for reaction of the triplet with oxygen and for dimerization is 1.1; the ratio of rate constants for triplet decay and for dimerization is 5.9 × 10-5 M. The increase in ISC with photon energy suggests that ISC is favoured from excited vibrational levels. The quantum yield for hydration is about 0.002 at pH 4.5 for all wavelengths, but increases as the pH is decreased.  相似文献   

19.
The photochemistry of 4-chlorophenol (1) in water and in the presence of cyclodextrins has been studied by means of steady-state and time-resolved experiments. These have shown that 1 undergoes photoheterolysis of the C--Cl bond in the triplet state to yield the 4-hydroxyphenyl cation (3)2 in equilibrium with 4-oxocyclohexa-2,5-dienylidene, (3)3. These triplet intermediates scarcely react with a n nucleophile, such as water, nor abstract hydrogen from this solvent, thus they are long-lived (approximately 1 micros). Specific trapping of both intermediates has been achieved. The cation adds to 2-propenol, k(add) approximately 1.3 x 10(8) m(-1) s(-1), to form the long-lived phenonium ion 11 (with lambda(max) = 290 nm), which then converts to 3-(4-hydroxyphenyl)propane-1,2-diol (10). Carbene (3)3 is trapped by oxygen to give benzoquinone and is reduced by D-glucose (k(q) = 8.5 x 10(6) m(-1) s(-1)) to give the phenoxyl radical (8) and phenol (9). Cyclodextrins have been found to trap the intermediates much more efficiently (k(q) = 9.4 x 10(8) m(-1) s(-1) with beta-CD), which indicates that inclusion is involved. Ground state 1 forms inclusion complexes with 1:1 stoichiometry and association constants of 140 and 300 M(-1) with alpha- and beta-CD, respectively. Complexation does not change the efficiency or the mode of photofragmentation of 1; however, it does influence the course of the reaction because the major portion of the intermediates are reduced to phenol within the cavity (k'(red)> or = 5 x 10(7) s(-1)) either via a radical 8 or via a radical cation 9(+)(.). Under these conditions, neither 2-propenol nor oxygen trap the intermediates to a significant extent.  相似文献   

20.
Both the neurotransmitter serotonin and the unnatural amino acid 5-hydroxytryptophan (5HT), contain the 5-hydroxyindole chromophore. The photochemistry of 5HT is being investigated in relation to the multiphoton excitation of this chromophore to produce a characteristic photoproduct with green fluorescence ('hyperluminescence'). Laser flash photolysis (308 nm) of 5HT in aqueous solution at neutral pH produces both the neutral 5-indoloxyl radical (lambda(max) 400-420 nm) and another transient absorption with lambda(max) 480 nm and lifetime of 2 micros in deaerated solutions. Based on quenching by oxygen and beta-carotene, the species at 480 nm is identified as the triplet excited state of 5HT. In acidic solution a new oxygen-insensitive intermediate with lambda(max) 460 is assigned to the radical cation of 5HT. Time-resolved measurements of luminescence at 1270 nm have shown that the triplet state of 5HT is able to react with oxygen to form singlet excited oxygen (1O2*) with a quantum yield of approximately 0.1. However, 5HT has also been found to be an effective quencher of singlet oxygen with a second order rate constant of 1.3 x 10(8) dm3 mol(-1) s(-1). The results are discussed in the light of recent observations on the multiphoton-excited photochemistry of serotonin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号