首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
Hydrothermal synthesis in the M/Mo/O (M=Co,Ni) system was investigated. Novel transition metal tetramolybdate dihydrates MMo4O13·2H2O (M=Co,Ni), having an interesting pillared layer structure, were found. The molybdates crystallize in the triclinic system with space group P−1, Z=1 with unit cell parameters of a=5.525(3) Å, b=7.058(4) Å, c=7.551(5) Å, α=90.019(10)°, β=105.230(10)°, γ=90.286(10)° for CoMo4O13·2H2O, and a=5.508(2) Å, b=7.017(3) Å, c=7.533(3) Å, α=90.152(6)°, β=105.216(6)°, γ=90.161(6)° for NiMo4O13·2H2O The structure is composed of two-dimensional molybdenum-oxide (2D Mo-O) sheets pillared with CoO6 octahedra. The 2D Mo-O sheet is made up of infinite straight ribbons built up by corner-sharing of four molybdenum octahedra (two MoO6 and two MoO5OH2) sharing edges. These infinite ribbons are similar to the straight ones in triclinic-K2Mo4O13 having 1D chain structure, but are linked one after another by corner-sharing to form a 2D sheet structure, like the twisted ribbons in BaMo4O13·2H2O (or in orthorhombic-K2Mo4O13) are.  相似文献   

2.
The synthesis, structure, and physical properties of five R-type Ru ferrites with chemical formula BaMRu5O11 (M=Li and Cu) and BaM2Ru4O11 (M′=Mn, Fe and Co) are reported. All the ferrites crystallize in space group P63/mmc and consist of layers of edge sharing octahedra interconnected by pairs of face sharing octahedra and isolated trigonal bipyramids. For M=Li and Cu, the ferrites are paramagnetic metals with the M atoms found on the trigonal bipyramid sites exclusively. For M′=Mn, Fe and Co, the ferrites are soft ferromagnetic metals. For M′=Mn, the Mn atoms are mixed randomly with Ru atoms on different sites. The magnetic structure for BaMn2Ru4O11 is reported.  相似文献   

3.
LiMO2 materials (M=Mn, Fe, and Co) with different structures were synthesized and their enthalpies of formation from oxides (Li2O and M2O3, M=Mn and Fe), or from oxides (Li2O and CoO) plus oxygen at 25 °C were determined by high-temperature oxide melt solution calorimetry. The relative stability of the polymorphs of the compound LiMO2 was established based on their enthalpies of formation. Phase transformations in LiFeO2 were investigated by differential scanning calorimetry and high-temperature oxide melt solution calorimetry. The phase transition enthalpies at 25 °C for βα, γβ, and γα are 4.9±0.7, 4.3±0.8 and , respectively. Thus the γ phase (ordered cations) is the stable form of LiFeO2 at room temperature, the α phase (disordered cations) is stable at high temperature and the β phase may have a stability field at intermediate temperatures.  相似文献   

4.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

5.
We describe an investigation of the structure and dielectric properties of MM′O4 and MTiM′O6 rutile-type oxides for M=Cr, Fe, Ga and M′=Nb, Ta and Sb. All the oxides adopt a disordered rutile structure (P42/mnm) at ambient temperature. A partial ordered trirutile-type structure is confirmed for FeTaO4 from the low temperature (17 K) neutron diffraction studies. While both the MM′O4 oxides (CrTaO4 and FeTaO4) investigated show a normal dielectric property MTiM′O6 oxides for M=Fe, Cr and M′=Nb/Ta/Sb display a distinct relaxor/relaxor-like response. Significantly the corresponding gallium analogs, GaTiNbO6 and GaTiTaO6, do not show a relaxor response at T<500 K.  相似文献   

6.
Nanoparticles of MFe2O4 (M=Mn, Co and Ni), with diameters ranging from 5 to 10 nm, have been obtained through a solvothermal method. In this synthesis, an alcohol (benzyl alcohol or hexanol) is used as both a solvent and a ligand; it is not necessary, therefore, to add a surfactant, simplifying the preparation of the dispersed particles. We have studied the influence of the synthetic conditions (temperature, time of synthesis and nature of solvent) on the quality of the obtained ferrites and on their particle size. In this last aspect, we have to highlight that the solvent plays an important role on the particle size, obtaining the smallest diameters when hexanol was used as a solvent. In addition, the magnetic properties of the obtained compounds have been studied at room temperature (RT). These compounds show a superparamagnetic behaviour, as was expected for single domain nanoparticles, and good magnetization values. The maxima magnetization values of the MFe2O4 samples are quite high for such small nanoparticles; this is closely related to the high crystallinity of the particles obtained by the solvothermal method.  相似文献   

7.
Different polymorphs of MRe2O6 (MFe, Co, Ni) with rutile-like structures were prepared using high-pressure high-temperature synthesis. For syntheses temperatures higher than ∼1573 K, tetragonal rutile-type structures (P42/mnm) with a statistical distribution of M- and Re-atoms on the metal position in the structure were observed for all three compounds, whereas rutile-like structures with orthorhombic or monoclinic symmetry, partially ordered M- and Re-ions on different sites and metallic Re-Re-bonds within Re2O10-pairs were found for CoRe2O6 and NiRe2O6 at a synthesis temperature of 1473 K. According to the XPS measurements, a mixture of Re+4/Re+6 and M2+/M3+ is present in both structural modifications of CoRe2O6 and NiRe2O6. The low-temperature forms contain more Re+4 and M3+ than the high-temperature forms. Tetragonal and monoclinic modifications of NiRe2O6 order with a ferromagnetic component at ∼24 K, whereas tetragonal and orthorhombic CoRe2O6 show two magnetic transitions: below ∼17.5 and 27 K for the tetragonal and below 18 and 67 K for the orthorhombic phase. Tetragonal FeRe2O6 is antiferromagnetic below 123 K.  相似文献   

8.
Four new compounds La5Re3MgO16 La5Re3FeO16 La5Re3CoO16 La5Re3NiO16 have been prepared by solid-state reaction and characterized by X-ray and neutron powder diffraction and SQUID magnetometry. Rietveld refinement revealed that the four compounds are isostructural with La5Re3MnO16 and crystallize in space group with cell parameters a=7.9370(3), 7.9553(5), 7.9694(7), and 7.9383(4) Å; b=7.9998(3), 7.9960(6), 8.0071(8), and 7.9983(5) Å; c=10.1729(4), 10.1895(7), 10.182(1), and 10.1732(6) Å; α=90.190(3)°, 90.270(3)°, 90.248(4) °, 90.287(3)°; β=94.886(2)°, 95.082(3)°, 94.980(4)°, 94.864(3)°; γ=89.971(4)°, 90.001(5)°, 89.983(6)°, 89.968(4)° for Mg, Fe, Co, and Ni, respectively. The structures are related to a layered perovskite. The layers of corner-sharing octahedra Re5+M2+O6 (M2+=Mg, Fe, Co, Ni) are pillared by diamagnetic edge-sharing octahedra dimers, Re2O10, involving a Re=Re double bond. Three crystallographically independent lanthanum atoms occupy the three-dimensional interstices. All compounds obey the Curie-Weiss law at sufficiently high temperatures with Curie constants or effective magnetic moments near the expected values for the combination of Re5+(S=1) and M2+(S=0, 2, 3/2, 1 for Mg, Fe, Co, and Ni, respectively). Weiss constants, θC, are negative (−575, −84, −71, and −217 K for Mg, Fe, Co, and Ni, respectively) indicating the predominance of antiferromagnetic exchange coupling. The phases for M=Fe, Co and Ni show long-range order at 155, 33, 36 and 14 K, respectively. Neutron diffraction discloses a magnetic structure for the Fe series member consisting of ferrimagnetic perovskite layers coupled antiparallel along the stacking c-axis, direction which is consistent with the magnetic structure found recently for La5Re3MnO16.  相似文献   

9.
Nanocrystalline single-phase samples of Zn1−xNixFe2O4 ferrites (0<x<1) have been obtained via a soft-chemistry method based on citrate-ethylene glycol precursors, at a relatively low temperature (650 °C). The influence of the nickel and zinc contents as well as that of heat treatments were investigated by means of X-ray powder diffraction, Brunauer-Emmett-Teller (BET) surface area, scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy. Higher Ni content increases the surface areas, the largest one (∼20 m2/g) being obtained for NiFe2O4 annealed at 650 °C for 15 h. For all compositions, the surface area decreases for prolonged annealing at 650 °C and for higher annealing temperatures. Those results were correlated to the particle size evolution; the smallest particles (∼50 nm) observed in the NiFe2O4 sample (650 °C, 15 h) steadily increase as Ni ions were replaced by Zn, reaching ∼100 nm in the ZnFe2O4 sample (650 °C, 15 h). For all the Zn1−xNixFe2O4 samples and, whatever the heat treatments was, the FTIR spectra show two fundamental absorption bands in the range 650-400 cm−1, characteristics of metal vibrations, without any superstructure stating for cation ordering. The highest ν1-tetrahedral stretching, observed at ∼615 cm−1 in NiFe2O4, shifts towards lower values with increasing Zn, whereas the ν2-octahedral vibration, observed at 408 cm−1 in NiFe2O4, moves towards higher wavenumbers, reaching 453 cm−1 in ZnFe2O4.  相似文献   

10.
A series of metalloborophosphates Na2[MIIB3P2O11(OH)]·0.67H2O (MII=Mg, Mn, Fe, Co, Ni, Cu, Zn) have been prepared hydrothermally and their structures have been solved by single-crystal diffraction techniques. They all crystallize in a hexagonal space group P63 and form a 3D microporous structure with 12-membered ring channels consisted of octahedral (MIIO6), tetrahedral (BO4, PO4) and triangular (BO2(OH)) units, in which the counter Na+ cations and water molecules are located. The Na+ cations are mobile and can be exchanged by Li+ in a melt of LiNO3. Their open frameworks are thermal stable up to about 500 °C. Completed solid solutions between two different transition metals can also be obtained. Magnetic properties of Na2[MIIB3P2O11(OH)]·0.67H2O (MII=Mn, Co, Ni, Cu) have been investigated.  相似文献   

11.
The influence of titanium oxide on the surface interactions of MO (M=Cu and Ni)/γ-Al2O3 catalysts has been studied by using XRD, LRS and XPS. For the catalysts with titania loadings lower than 0.56 mmol Ti4+/100 m2 Al2O3 (i.e., the dispersion capacity), the dispersion of MO oxides on the surface of γ-Al2O3 support is significantly suppressed by the dispersed Ti4+ ions. The inhibiting effect is dependent on the properties of MO oxides. When titania loadings are considerably higher than the dispersion capacity, MO oxides exhibit a rather stronger interaction with the formed TiO2 particles than the γ-Al2O3 support, and some of the dispersed M2+ ions might be accommodated by the vacant sites on TiO2. Therefore, the catalysts can be considered as the compositions of MO/TiO2 and MO/TiO2/γ-Al2O3 (dispersed titania). TPR results show that either dispersed titania or formed TiO2 particles can promote the reduction of copper oxide species, but the latter to a greater extent. Based on the consideration of the incorporation model, it is proposed that the surface structure of the support plays an important role in surface interactions.  相似文献   

12.
Nickel and iron substituted LaCoO3 with rhombohedrally distorted perovskite structure were obtained in the temperature range of 600-900 °C by thermal decomposition of freeze-dried citrates and by the Pechini method. The crystal structure, morphology and defective structure of LaCo1−xNixO3 and LaCo1−xFexO3 were characterized by X-ray diffraction and neutron powder diffraction, TEM and SEM analyses and electron paramagnetic resonance spectroscopy. The reducibility was tested by temperature programmed reduction with hydrogen. The products of the partial and complete reduction were determined by ex-situ XRD experiments. The replacement of Co by Ni and Fe led to lattice expansion of the perovskite structure. For perovskites annealed at 900 °C, there was a random Ni, Fe and Co distribution. The morphology of the perovskites does not depend on the Ni and Fe content, nor does it depend on the type of the precursor used. LaCo1−xNixO3 perovskites (x>0.1) annealed at 900 °C are reduced to Co/Ni transition metal and La2O3 via the formation of oxygen deficient Brownmillerite-type compositions. For LaCo1−xNixO3 annealed at 600 °C, Co/Ni metal, in addition to oxygen-deficient perovskites, was formed as an intermediate product at the initial stage of the reduction. The interaction of LaCo1−xFexO3 with H2 occurs by reduction of Co3+ to Co2+ prior to the Fe3+ ions. The reducibility of Fe-substituted perovskites is less sensitive towards the synthesis procedure in comparison with that of Ni substituted perovskites.  相似文献   

13.
Thermal behavior, relative stability, and enthalpy of formation of α (pink phase), β (blue phase), and red NaCoPO4 are studied by differential scanning calorimetry, X-ray diffraction, and high-temperature oxide melt drop solution calorimetry. Red NaCoPO4 with cobalt in trigonal bipyramidal coordination is metastable, irreversibly changing to α NaCoPO4 at 827 K with an enthalpy of phase transition of −17.4±6.9 kJ mol−1. α NaCoPO4 with cobalt in octahedral coordination is the most stable phase at room temperature. It undergoes a reversible phase transition to the β phase (cobalt in tetrahedra) at 1006 K with an enthalpy of phase transition of 17.6±1.3 kJ mol−1. Enthalpy of formation from oxides of α, β, and red NaCoPO4 are −349.7±2.3, −332.1±2.5, and −332.3±7.2 kJ mol−1; standard enthalpy of formation of α, β, and red NaCoPO4 are −1547.5±2.7, −1529.9±2.8, and −1530.0±7.3 kJ mol−1, respectively. The more exothermic enthalpy of formation from oxides of β NaCoPO4 compared to a structurally related aluminosilicate, NaAlSiO4 nepheline, results from the stronger acid-base interaction of oxides in β NaCoPO4 (Na2O, CoO, P2O5) than in NaAlSiO4 nepheline (Na2O, Al2O3, SiO2).  相似文献   

14.
Series of compositions Bi2(M′xM1−x)4O9 with x=0.0, 0.1,…, 1.0 and M′/M=Ga/Al, Fe/Al and Fe/Ga were synthesized by dissolving appropriate amounts of corresponding metal nitrate hydrates in glycerine, followed by gelation, calcination and final heating at 800 °C for 24 h. The new compositions with M′/M=Ga/Al form solid-solution series, which are isotypes to the two other series M′/M=Fe/Al and Fe/Ga. The XRD data analysis yielded in all cases a linear dependence of the lattice parameters related on x. Rietveld structure refinements of the XRD patterns of the new compounds, Bi2(GaxAl1−x)4O9 reveal a preferential occupation of Ga in tetrahedral site (4 h). The IR absorption spectra measured between 50 and 4000 cm−1 of all systems show systematic shifts in peak positions related to the degree of substitution. Samples treated in 18O2 atmosphere (16 h at 800 °C, 200 mbar, 95% 18O2) for 18O/16O isotope exchange experiments show a well-separated IR absorption peak related to the M-18Oc-M vibration, where Oc denotes the common oxygen of two tetrahedral type MO4 units. The intensity ratio of M-18Oc/M-16Oc IR absorption peaks and the average crystal sizes were used to estimate the tracer diffusion coefficients of polycrystalline Bi2Al4O9 (D=2×10−22 m2s−1), Bi2Fe4O9 (D=5×10−21 m2s−1), Bi2(Ga/Al)4O9 (D=2×10−21 m2s−1) and Bi2Ga4O9 (D=2×10−20 m2s−1).  相似文献   

15.
Karrooite, MgTi2O5, is a promising ceramic pigment due to its high refractoriness and refractive indices, as well as its ability to host transition metal ions in two crystallographically distinct octahedral sites. The colouring performance was investigated combining X-ray powder diffraction with UV-vis-NIR spectroscopy on karrooite doped with V, Cr, Mn, Fe, Co or Ni (M) according to the formula Mg1−xTi2−xM2xO5, with x=0.02 and 0.05. Transition metals solubility in the karrooite lattice is not complete and a second phase is always present (geikielite or rutile). Structural data proved that incorporation of different chromophore ions into the karrooite structure affects unit cell parameters, bond length distances and angles, site occupancies and therefore cation order-disorder. Optical spectra exhibit broad absorbance bands of Co(II), Cr(IV), Fe(III), Mn(II), Mn(III), Ni(II), V(IV) with distinct contributions by cations in the M1 and M2 sites. Karrooite pigments have colours ranging from orange to brown-tan (Cr, Fe, Mn, V) to green (Co) and yellow (Ni) that are stable in low-temperature (<1050 °C) ceramic glazes and glassy coatings.  相似文献   

16.
The new phases Ba2LaMNb4O15: M=Mn, Fe were prepared by solid state reaction at 1100 °C. They have the tetragonal tungsten bronze structure, space group P4/mbm, at room temperature. The two octahedral sites show partial order of M and Nb with preferential occupancy of the smaller B(1) sites by M. Both phases have high permittivities 90±15 over the range 10-320 K. Ba2LaFeNb4O15 is highly insulating with bulk conductivity ?10−8 ohm−1 cm−1 at 25 °C and tan δ?0.001 over the range 100-320 K and at 105 Hz. Solid solutions between these new phases and the compositionally and structurally related relaxor ferroelectric Ba2LaTi2Nb3O15 show gradual loss of ferroelectric behaviour attributed to replacement of polarisable Ti4+ by a mixture of (Mn, Fe)3+ and Nb5+.  相似文献   

17.
La5Re3CoO16 and La5Re3NiO16 were synthesized by solid-state reaction and studied by SQUID magnetometry, heat capacity and powder neutron diffraction measurements. These two compounds belong to a series of isostructural Re-based pillared perovskites [Chi et al. J. Solid State Chem. 170 (2003) 165]. Magnetic susceptibility measurements indicate apparent short-range ferri or ferromagnetic correlations and possible long-range antiferromagnetic order for La5Re3CoO16 at 35 K, and at 38 and 14 K for La5Re3NiO16. Heat capacity measurements of the Co compound show a lambda anomaly, typical of long-range magnetic order, at 32 K. In contrast, the Ni compound displays a broader, more symmetric feature at 12 K in the heat capacity data, indicative of short-range magnetic order. Low-temperature powder neutron diffraction revealed contrasting magnetic structures. While both show an ordering wave vector, k=(0,0,1/2), in La5Re3CoO16, the Co2+ and Re5+ moments are ordered ferrimagnetically within the corner-shared octahedral layers, while the layers themselves are coupled antiferromagnetically along the c-axis, as also found in La5Re3MnO16 and La5Re3FeO16. In the case of the Ni material, the Re5+ and Ni2+ moments in the perovskite layers couple ferromagnetically and are canted 30° away from the c-axis, angled 45° in the ab-plane. The layers then couple antiferromagnetically at low temperature, a unique magnetic structure for this series. The properties of the La5Re3MO16 series, with M=Mn, Fe, Co, Ni and Mg are also reviewed.  相似文献   

18.
Phase equilibria in the systems Ag2MoO4-MMoO4 (M=Ca, Sr, Ba, Pb, Ni, Co, Mn) and subsolidus phase relations in the systems Ag2MoO4-MO-MoO3 (M=Ca, Pb, Cd, Mn, Co, Ni) were investigated using XRD and thermal analysis. The systems Ag2MoO4-MMoO4 (M=Ca, Sr, Ba, Pb, Ni) belong to the simple eutectic type whereas in the systems Ag2MoO4-MMoO4 (M=Co, Mn) incongruently melting Ag2M2(MoO4)3 (M=Co, Mn) were formed. In the ternary oxide systems studied no other compounds were found. Low-temperature LT-Ag2Mn2(MoO4)3 reversibly converts into the high-temperature form of a similar structure at 450-500°C. The single crystals of Ag2Co2(MoO4)3 and LT-Ag2Mn2(MoO4)3 were grown and their structures determined (space group , Z=2; lattice parameters are a=6.989(1) Å, b=8.738(2) Å, c=10.295(2) Å, α=107.67(2)°, β=105.28(2)°, γ=103.87(2)° and a=7.093(1) Å, b=8.878(2) Å, c=10.415(2) Å, α=106.86(2)°, β=105.84(2)°, γ=103.77(2)°, respectively) and refined to R(F)=0.0313 and 0.0368, respectively. The both compounds are isotypical to Ag2Zn2(MoO4)3 and contain mixed frameworks of MoO4 tetrahedra and pairs of M2+O6 octahedra sharing common edges. The Ag+ ions are disordered and located in the voids forming infinite channels running along the a direction. The peculiarities of the silver disorder in the structures of Ag2M2(MoO4)3 (M=Zn, Mg, Co, Mn) are discussed as well as their relations with analogous sodium-containing compounds of the structural family of Na2Mg5(MoO4)6. The phase transitions in Ag2M2(MoO4)3 (M=Mg, Mn) of distortive or order-disorder type are suggested to have superionic character.  相似文献   

19.
A systematic study of N2H5[M(N2H3COO)3]·H2O (M∈{Co, Zn}) type of compounds, which are typical model systems for transition metal complexes with α-amino acids (the latter are not obtainable in crystalline form), was carried out. The crystal structures of these compounds were solved by X-ray crystallographic methods. FTIR spectra at room and low temperature (∼100 K) as well as Raman spectra at room temperature were recorded, and analyzed in details. Also, the geometries of the Zn(N2H3COO)3 and N2H5+ species were fully optimized at ab initio HF and B3LYP/6-31+G(d,p) level of theory, and subsequent vibrational analyses were performed on the basis of which several important reassignments of the IR and Raman bands were proposed. In order to study the binding energetics and the ligand-cation charge-transfer interactions within the Zn(N2H3COO)3 complex, NBO analysis was carried out, employing the second-order perturbation theory analysis of the Fock matrix (i.e., its Kohn-Sham analog) within the NBO basis.  相似文献   

20.
Two novel noncentrosymmetric borates oxides, MBi2B2O7 or MBi2O(BO3)2 (MCa, Sr), have been synthesized by solid-state reactions in air at temperatures in the 600-700 °C range. Their crystal structures have been determined ab initio and refined using powder neutron diffraction data. CaBi2B2O7 crystallizes in the orthorhombic Pna21 space group with a=8.9371(5) Å, b=5.4771(3) Å, c=12.5912(7) Å, Z=4, Rwp=0.118, χ2=2.30. SrBi2B2O7 crystallizes in the hexagonal P63 space group with a=9.1404(4) Å, c=13.0808(6) Å, Z=6, Rwp=0.115, χ2=4.15. Large displacement parameters suggest the presence of disorder in SrBi2B2O7 as also revealed by diffuse 2×a superstructure reflections in electron diffraction patterns. Both structures are built of identical (001) neutral layers of corner-sharing BO3 triangles and MO6 trigonal prisms forming six-membered rings in which Bi2O groups are located. Adjacent layers are stacked in a staggered configuration and connected through weak Bi-O bonds. A moderate efficiency for second harmonic generation (SHG) has been measured for a powder sample of CaBi2B2O7 (deff=2deff(KDP)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号