首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A pure calcium borate Ca2[B2O4(OH)2]·0.5H2O has been synthesized under hydrothermal condition and characterized by XRD, FT-IR and TG as well as by chemical analysis. The molar enthalpy of solution of Ca2[B2O4(OH)2]·0.5H2O in HC1·54.582H2O was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in HC1·54.561H2O and of CaO in (HCl + H3BO3) solution, together with the standard molar enthalpies of formation of CaO(s), H3BO3(s) and H2O(l), the standard molar enthalpy of formation of −(3172.5 ± 2.5) kJ mol−1 of Ca2[B2O4(OH)2]·0.5H2O was obtained.  相似文献   

2.
Five series of perovskite-type compounds in the system La1−xCaxCr1−yTiyO3 with the nominal compositions y=0, x=0-0.5; y=0.2, x=0.2-0.8; y=0.5, x=0.5-1.0; y=0.8, x=0.6-1.0 and y=1, x=0.8-1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)?1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1−x′−y)Ca(x′+y)CrIVxCrIII(1−x′−y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x<0.6-0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1−xCaxCr1−yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10−16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10−15-0.21×105 Pa, the compounds with x>y (acceptor doped) are p-type semiconductors and those with x<y (donor doped) and x=y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite structures: [Cr3+]/[Cr4+] and [Ti4+]/[Ti3+]. The maximum electrical conductivity at 900 °C and pO2=10−15 Pa was found for the composition La0.1Ca0.9TiO3 (near 50 S/cm) and in air at 900 °C for La0.5Ca0.5CrO3 (close to 100 S/cm).  相似文献   

3.
The aqueous synthesis and electrochemical properties of nanocrystalline MxV2O5Ay·nH2O are described. It is easily and quickly prepared by precipitation from acidified vanadate solutions. MxV2O5Ay·nH2O has been characterized by X-ray powder diffraction, electron microscopy, TGA, chemical analyses, and electrochemical studies. The atomic structure is related to that of xerogel-derived V2O5·nH2O. In MxV2O5Ay·nH2O, M is a cation from the starting vanadate salt and A is an anion from the mineral acid. This material exhibits high, reversible Li capacity and may be considered for use in a cathode in primary and secondary batteries. The lithium capacity of an electrode composed of MxV2O5Ay·nH2O/EPDM/carbon (88/4/8) is ∼380(mA h)/g (C/80 rate) and the energy density is ∼1000(W h)/kg (120-μm-thick cathode, 4-1.5 V, versus Li metal anode). Critical parameters identified in the synthesis of MxV2O5Ay·nH2O, with respect to achieving high Li-ion insertion capacity, are acid/vanadium ratio, starting vanadate salt, and temperature. Inclusion of carbon black in the synthesis yields a composite that maintains the high Li capacity, lowers the electrochemical-cell polarization, and preserves the lithium capacity at higher discharge rates. Li-ion coin cells, using pre-lithiated graphite anodes, exhibit electrochemical performance comparable to that of Li-metal coin cells.  相似文献   

4.
Two new tellurites, NH4RbTe4O9·2H2O and NH4CsTe4O9·2H2O have been synthesized and characterized. The compounds were synthesized hydrothermally, in near quantitative yields, using the alkali metal halide, TeO2, and NH4OH as reagents. The iso-structural materials exhibit layered, two-dimensional structural topologies consisting of TeOx (x=3, 4, or 5) polyhedra separated by NH4+, H2O, Rb+ or Cs+ cations. Unique to these materials is the presence of TeO3, TeO4, and TeO5 polyhedra. Thermogravimetric and infrared spectroscopic data are also presented. Crystal data: NH4RbTe4O9·2H2O: Monoclinic I2/a (no. 15), a=18.917(3) Å, b=6.7002(11) Å, c=21.106(5) Å, β=101.813(2)°, V=2618.5(9) Å3, Z=8; NH4CsTe4O9·2H2O: Monoclinic I2/a (no. 15), a=18.9880(12) Å, b=6.7633(4) Å, c=21.476(2) Å, β=102.3460(10)°, V=2694.2(3) Å3, Z=8.  相似文献   

5.
Nitrogen substituted yellow colored anatase TiO2−xNx and Fe-N co-doped Ti1−yFeyO2−xNx have been easily synthesized by novel hydrazine method. White anatase TiO2−δ and N/Fe-N-doped samples are semiconducting and the presence of ESR signals at g ∼1.994-2.0025 supports the oxygen vacancy and g∼4.3 indicates Fe3+ in the lattice. TiO2−xNx has higher conductivity than TiO2−x and Fe/Fe-N-doped anatase and the UV absorption edge of white TiO2−x extends in the visible region in N, Fe and Fe-N co-doped TiO2, which show, respectively, two band gaps at ∼3.25/2.63, ∼3.31/2.44 and 2.8/2.44 eV. An activation energy of ∼1.8 eV is observed in Arrhenius log resistivity vs. 1/T plots for all samples. All TiO2 and Fe-doped TiO2 show low 2-propanol photodegradation activity but have significant NO photodestruction capability, both in UV and visible regions, while standard Degussa P-25 is incapable in destroying NO in the visible region The mid-gap levels that these N and Fe-N-doped TiO2 consist may cause this discrepancy in their photocatalytic activities.  相似文献   

6.
A comparative study on the oxidation and charge compensation in the AxCoO2−δ systems, A=Na (x=0.75, 0.47, 0.36, 0.12) and Li (x=1, 0.49, 0.05), using X-ray absorption spectroscopy at O 1s and Co 2p edges is reported. Both the O 1s and Co 2p XANES results show that upon removal of alkali metal from AxCoO2−δ the valence of cobalt increases more in LixCoO2−δ than in NaxCoO2−δ. In addition, the data of O 1s XANES indicate that charge compensation by oxygen is more pronounced in NaxCoO2−δ than in LixCoO2−δ.  相似文献   

7.
Grinding a mixture of hydrous amorphous chromium oxide (Cr2O3·nH2O), vanadium oxide (V2O5) and antimony oxide (Sb2O5) was conducted by using a planetary ball mill, to investigate their mechanochemical reactions to form chromium vanadium oxide (CrVO4) and chromium antimony oxide (CrSbO4). The synthesis reactions proceed with an increase in grinding periods of time. The ground samples consist of agglomerates with particle size of about ten nanometers. The synthesized CrVO4 sample exhibits a rutile-type tetragonal crystal structure, which is a high pressure phase. Additionally, solid solutions, CrV1−xSbxO4 (x=0∼1, Δx=0.25), have been synthesized mechanochemically from the mixtures of Cr2O3·nH2O, V2O5 and Sb2O5.  相似文献   

8.
A new magnesium borate MgO·3B2O3·3.5H2O has been synthesized by the method of phase transformation of double salt and characterized by XRD, IR and Raman spectroscopy as well as by TG. The structural formula of this compound was Mg[B6O9(OH)2]·2.5H2O. The enthalpy of solution of MgO·3B2O3·3.5H2O in approximately 1 mol dm−3 HCl was determined. With the incorporation of the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(5595.02±4.85) kJ mol−1 of MgO·3B2O33.5H2O was obtained. Thermodynamic properties of this compound was also calculated by group contribution method.  相似文献   

9.
We have employed aliovalent A-site cation substitution, LaIII-for-SrII, to dope the Sr(Fe0.5Ta0.5)O3 perovskite oxide with electrons. Essentially single-phase samples of (Sr1−xLax)(Fe0.5Ta0.5)O3 were successfully synthesized up to x≈0.3 in a vacuum furnace at 1400 °C. The samples were found to crystallize (rather than with orthorhombic symmetry) in monoclinic space group P21/n that accounts for the partial ordering of the B-site cations, Fe and Ta. With increasing La-substitution level, x, the degree of Fe/Ta order was found to increase such that the La-richest compositions are best described by the B-site ordered double-perovskite formula, (Sr,La)2FeTaO6. From Fe L3 and Ta L3 XANES spectra it was revealed that upon electron doping the two B-site cations, FeIII and TaV, are both prone to reduction. Magnetic susceptibility measurements showed spin-glass type behaviour for all the samples with a transition temperature slightly increasing with increasing x.  相似文献   

10.
Two Ruddlesden-Popper compounds Can+1MnnO3n+1 with n=2 and 3 synthesized by a citrate gel technique have been studied by TEM. The structure of Ca4Mn3O10 is consistent with the previously determined structure having the space group Pbca and a a c+/a a c+ tilt system. The presence of defects suggests the possible high-temperature phase transition from untilted I4/mmm to Pbca. The structure of Ca3Mn2O7 was found to be different from the previously suggested I4/mmm symmetry. Ca3Mn2O7 forms with an orthorhombic structure with either Cmcm or Cmc21 space group. A structural model for Cmc21 based on the tilting of almost-rigid octahedra with a+ c c/a+ c c tilt system is proposed. The lamellar defects were shown to be twin variants of the Cmc21 structure with the (001)t interfaces, which suggests the possible tilting phase transition from the ideal I4/mmm to Cmc21 following the maximal group-subgroup symmetry tree: I4/mmmFmmmBbmm(Cmcm)→Bb21m(Cmc21).  相似文献   

11.
Optical and vibrational studies have been carried out on 60B2O3·(20−x)Na2O·10PbO·10Al2O3:xTiO2 (x=0, 1, 2, 3, 4, and 5 mol%) glasses, in order to understand the role of TiO2 in the 60B2O3·20Na2O·10PbO·10Al2O3 glass matrix. The X-ray patterns reveal homogeneous glasses over the entire compositional range. The absorption spectra show that the energy of the optical band gap (ΔEopt) and Urbach's energy (EU) decreases as TiO2 content increases. The changes observed in the Raman and IR spectra are related to the BO4→BO3 back conversion effect and the appearance of “loose” BO4 groups. The data indicate that titanium ions act as a network modifier.  相似文献   

12.
Compounds in the solid solution series Ca1−xNaxTi1−xTaxO3 were synthesized at 1300 °C, followed by annealing at 850 °C or 800 °C with quenching and/or slow cooling to room temperature. Rietveld refinement of their powder X-ray diffraction patterns show that all compounds are single-phase ternary perovskites which adopt the space group Pbnm (a≈b≈√2ap; c≈2ap; Z=4) at ambient conditions. The unit cell parameters and cell volumes of the compounds increase regularly with increasing values of x. The coordination of the A-site cations changes throughout the series from eight for CaTiO3 to nine for NaTaO3. Compounds with 0?x ?0.4 have A-site cations in eight fold coordination, whereas the coordination of those with 0.4<x<0.9 is ambiguous. Analysis of the crystal chemistry of the compounds shows that the change in coordination at x=0.4 is related to the departure of the B-site cations from the second coordination sphere of the A-site cations, as in compounds with x>0.4 the A-IIO distances become less than the A-B intercation distances. Contemporaneous with these coordination changes, the tilt angles of the BO6 polyhedra decrease with increasing values of x. This solid solution series is unusual in that these structural and coordination changes occur regardless that Goldschmidt tolerance factors remain essentially constant at approximately 0.89, and observed tolerance factors, assuming eight fold coordination of the A-site cations, range only from 0.91 to 0.93 (0?x?0.8).  相似文献   

13.
A serial of samples in Y2O3-Ga2O3-Tm2O3 pseudo-ternary system are prepared by solid-state chemical reaction method. The range of solid solution in (Y1−xTmx)3GaO6 is 0<x<0.384. Powder X-ray diffraction shows that the compounds crystallize in Gd3GaO6 (Cmc21)-type structure. The solid solubilities of Y3+xGa5−xO12 (x=0-0.77) and Tm3+xGa5−xO12 (x=0-0.62) are 37.5-47.11 at% Y2O3, and 37.5-45.26 at% Tm2O3, respectively. PL spectra of Tm-doped Y3GaO6 show that there is a sharp blue emission at ∼456 nm from the 1D23F4 transition at room temperatures with two lifetimes (∼5 and ∼15 μs) and a narrow saturation range of PL intensity for the Tm3+ content from x=0.005 to 0.03. The sharp emission and long lifetime of (Y1−xTmx)3GaO6 indicate that Y3GaO6 is a potential phosphor and laser crystal host material.  相似文献   

14.
X-band and high-frequency EPR spectroscopy were used for studying the manganese environment in layered Li[MgxNi0.5−xMn0.5]O2, 0?x?0.5. Both layered LiMg0.5Mn0.5O2 and monoclinic Li[Li1/3Mn2/3]O2 oxides (containing Mn4+ ions only) were used as EPR standards. The EPR study was extended to the Ni-substituted analogues, where both Ni2+ and Mn4+ are paramagnetic. For LiMg0.5−xNixMn0.5O2 and Li[Li(1−2x)/3NixMn(2−x)/3]O2, an EPR response from Mn4+ ions only was detected, while the Ni2+ ions remained EPR silent in the frequency range of 9.23-285 GHz. For the diamagnetically diluted oxides, LiMg0.25Ni0.25Mn0.5O2 and Li[Li0.10Ni0.35Mn0.55]O2, two types of Mn4+ ions located in a mixed (Mn-Ni-Li)-environment and in a Ni-Mn environment, respectively, were registered by high-field experiments. In the X-band, comparative analysis of the EPR line width of Mn4+ ions permits to extract the composition of the first coordination sphere of Mn in layered LiMg0.5−xNixMn0.5O2 (0?x?0.5) and Li[Li(1−2x)/3NixMn(2−x)/3]O2 (x>0.2). It was shown that a fraction of Mn4+ are in an environment resembling the ordered “α,β”-type arrangement in Li1−δ1Niδ1[Li(1−2x)/3+δ1Ni2x/3−δ1)α(Mn(2−x)/3Nix/3)β]O2 (where and δ1=0.06 were calculated), while the rest of Mn4+ are in the Ni,Mn-environment corresponding to the Li1−δ2Niδ2[Ni1−yMny]O2 () composition with a statistical Ni,Mn distribution. For Li[Li(1−2x)/3NixMn(2−x)/3]O2 with x?0.2, IR spectroscopy indicated that the ordered α,β-type arrangement is retained upon Ni introduction into monoclinic Li[Li1/3Mn2/3]O2.  相似文献   

15.
Trimetallic oxoalkoxide complexes (Nb0.7Ta0.3)4O2(OMe)14(ReO4)2 (I), (Nb0.3Ta0.7)4O2(OMe)14(ReO4)2 (II) and (Nb0.5Ta0.5)4O2(OMe)14(ReO4)2 (III) were obtained by the interaction of rhenium heptoxide (VII) Re2O7 with niobium and tantalum alkoxides M2(OMe)10 (M=Nb, Ta) in toluene. The centrosymmetric molecules (I)-(III) can be considered as a product of condensation of two M2(OMe)9(OReO3) molecules with the formation of two oxo-bridges. The specific feature of the structure is the uneven distribution of metal atoms in the crystallographic positions, where one symmetry-independent position, connected via μ-O with a perrhenate ReO4 group, is predominantly occupied by niobium atoms, while the other one connected via alkoxide groups has a higher tantalum content. The distribution of Nb and Ta in the structure is truly even only for compound III. The niobium and tantalum content is varied to a different extent for I (less) and for II (more), which is apparently due to small differences in the sizes of these two cations, resulting in preferences for packing of different molecules in the structures. Thermal decomposition of (Nb1−xTax)4O2(OMe)14(ReO4)2 (x=0.3, 0.5, 0.7) in air leads to the formation of crystalline species of solid solutions based on tantalum and niobium oxides displaying semi-ordered pores with the size of 100−250 nm. In the dry nitrogen atmosphere, the decomposition leads to the amorphous complex oxides containing rhenium, niobium and tantalum.  相似文献   

16.
The structural and magnetic properties of Ta-doped Ca4Mn3−xTaxO10 (0≤x≤0.3) compounds have been investigated. Structural refinement indicates that the Ta doping maintains the orthorhombic layered perovskite structure with space group Pbca as Ca4Mn3O10 but induces an increase in both unit cell volume and octahedral distortion. The magnetization measurements reveal that the magnetization first increases and reaches to maximum for the x=0.1 sample and then gradually decreases with the increase of Ta content. There appear short-range ferromagnetic (FM) clusters in all the doped samples, which are caused by the double-exchange interaction between Mn4+ and Mn3+ that is induced by the charge compensation effect. As x is higher than 0.1, the overall results show evidence for the gradual appearance of a cluster glass behavior. When x increases to 0.3, the long-range antiferromagnetic (AFM) ground state is melted into the short-range magnetically ordered regions due to the increase of Ta5+ and Mn3+ at the expense of Mn4+. The competition between AFM regions and FM clusters makes the short-range magnetic components frustrate when the temperature falls to a frustrating point, and thus cluster glass transition occurs.  相似文献   

17.
The solid solubility between LaNbO4 and LaTaO4 was investigated by X-ray diffraction, and a two-phase region was observed in the composition region LaNb1−xTaxO4 where 0.4?x?0.8. Single-phase LaNb1−xTaxO4 (0?x?0.4) with the monoclinic Fergusonite structure at ambient temperature, was observed to transform to a tetragonal Scheelite structure by in-situ high-temperature X-ray diffraction, and the phase transition temperature was shown to increase with increasing Ta-content. This ferroelastic to paraelastic second-order phase transition was described by Landau theory using spontaneous strain as an order parameter. The thermal expansion of LaNb1−xTaxO4 (0?x0.4) was shown to be significantly higher below the phase transition than above. Single-phase LaNb1−xTaxO4 (0.8?x?1) with another monoclinic crystal structure at ambient temperature was shown to transform to an orthorhombic crystal structure by X-ray diffraction and differential scanning calorimetry. The phase transition temperature was observed to decrease with decreasing Ta-content. Finally, orthorhombic LaTaO4 could also be transformed to monoclinic LaTaO4 at ambient temperature by applying a uniaxial pressure of 150-170 MPa, reflecting the lower molar volume of monoclinic LaTaO4.  相似文献   

18.
A tetrasodium dimagnesium dihydrogen diphosphate octahydrate Na4Mg2(H2P2O7)4·8H2O was synthesized. It crystallizes in the monoclinic system, space group P21/m (no. 11), Z=4, and its unit-cell parameters are: a=8.0445(3) Å, b=11.5244(5) Å, c=9.0825(4) Å, β=113.1401(2)°, V=774.28(6) Å3. The structure was determined by single-crystal X-ray diffractometry and refined to a R index of 0.0294 (wR=0.0727) for 1878 independent reflections with I>2σ(I). The framework is made by the alternance of layers of MgO6/NaO6 octahedra and double tetrahedra PO4 along b-axis. Such layers are characterized by the presence of strong hydrogen bonds. (H2P2O7)2− anions exhibit bent eclipsed conformation. Besides, the crystal was analyzed by FT-IR and micro-Raman vibrational spectroscopy. No coincidences of the majority of the Raman and infrared spectra bands of Na4Mg2(H2P2O7)4·8H2O confirms a centrosymmetric structure of this material. The vibrational spectra confirm the bent POP configuration in this compound.  相似文献   

19.
The aim of this work was to determine structural parameters of the Y10−xLaxW2O21 (x=0-10) solid solution series and investigate their electric properties. Crystallographic data shows a gradual increase in symmetry with increasing La content, as the structure evolves from orthorhombic, Y10W2O21, towards the pseudo-cubic structure of Y5La5W2O21. The solubility limit of La2O3 was found to be 50% (x=5). Above this level two phases were observed, La6W2O15 and (La,Y)10+xW2−xO21−δ. The conductivity of Y rich samples was very low, with σ of the order 2×10−5-5×10−5 S cm−1 at 1000 °C, whilst ionic conductivity was observed for most La rich doped samples. The highest conductivity was observed for La10W2O21 and its doped analogues, at 1×10−3-5×10−3 S cm−1 at 1000 °C. Unit cell parameters were determined as a function of temperature from 0 to 1000°C, and thermal expansion of these materials was determined from temperature studies carried out at the Australian Synchrotron facility in Melbourne, Victoria, Australia.  相似文献   

20.
New oxides of general formula Sr2Ru2−xCoxO6−δ (0.5?x?1.5) have been synthesized as polycrystalline materials and characterized structurally by X-ray diffraction. For 0.5?x<0.67 the orthorhombic, Pnma, perovskite structure of the end member, SrRuO3, is found. At x=0.67 a phase separation into an Ru-rich Pnma phase and a Co-rich I2/c phase occurs. The I2/c form is also found for x=1.0 but another orthorhombic phase, Imma, obtains for x=1.33 and 1.5. Reductive weight losses indicate negligible oxygen non-stoichiometry, i.e., δ∼0, for all compositions even those rich in Co. High-resolution electron energy loss spectroscopy (EELS) indicates that cobalt is high-spin Co3+ or high-spin Co4+ for all x. Appropriate combinations of Ru4+, Ru5+, HS Co3+ and HS Co4+ are proposed for each x which are consistent with the observed Ru(Co)-O distances. Significant amounts of Co4+ must be present for large x values to explain the short observed distances. Broad maxima in the d.c. susceptibilities are found between 78 and 97 K with increasing x, along with zero-field-cooled (ZFC) and field-cooled (FC) divergences suggesting glassy magnetic freezing. A feature near 155 K for all samples indicates a residual amount of ferromagnetic SrRuO3 not detected by X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号