首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ternary stannides LixRh3Sn7−x (x=0.45, 0.64, 0.80) and LixIr3Sn7−x (x=0.62 and 0.66) were synthesized from the elements in sealed tantalum tubes in a water-cooled sample chamber of an induction furnace. The samples were characterized by X-ray diffraction on powders and single crystals. The stannides adopt the cubic Ir3Ge7-type structure (space group , Z=4). In this structure type the tin atoms occupy the Wyckoff positions 12d and 16f and form two interpenetrating frameworks consisting of cubes and square antiprisms. The rhodium and iridium atoms center the square antiprisms and are arranged in pairs. With increasing lithium substitution the lattice parameter of Ir3Sn7 (936.7) decreases via 932.2 pm (x=0.62) to 931.2 pm (x=0.66), while the Ir-Ir distance remains almost the same (290 pm). A similar trend is observed for the rhodium compounds. The lithium atoms substitute Sn on both framework sites. However, the 16f site shows a substantially larger preference for Li occupation. This is in contrast to the isotypic magnesium based compounds.  相似文献   

2.
Bi6.4Pb0.6P2O15.2 is a polymorph of structures with the general stoichiometry Bi6+xM1−xP2O15+y. However, unlike previously published structures that consist of layers formed by edge sharing OBi4 tetrahedra bridged by PO4 and TO6 (T=transition metal) tetrahedra and octahedra the title compound's structure is more complex. It is monoclinic, C2, a=19.4698(4) Å, b=11.3692(3) Å, c=16.3809(5) Å, β=101.167(1)°, Z=10. Single-crystal X-ray diffraction data were refined by least squares on F2 converging to R1=0.0387, wR2=0.0836 for 7023 intensities. The crystal twins by mirror reflection across (001) as the twin plane and twin component 1 equals 0.74(1). Oxygen ions are in tetrahedral coordination to four metal ions and the O(BiPb)4 units share corners to form layers that are part of the three-dimensional framework. Eight oxygen ions form a cube around the two crystallographically independent Pb ions. Pb-O bond lengths vary from 2.265(14) to 2.869(14) Å. Pairs of such cubes share an edge to form a Pb3O20 unit. The two oxygen ions from the unshared edges are part of irregular Bi polyhedra. Other oxygen ions of Bi polyhedra are part only of O(BiPb)4 units, and some oxygen ions of the polyhedra are also part of PO4 tetrahedra. One, two, three and or four PO4 moieties are connected to the Bi polyhedra. Bi-O bond lengths ?3.1 Å vary from 2.090(12) to 3.07(3) Å. The articulations of Pb cubes, Bi polyhedra and PO4 tetrahedra link into the three-dimensional structure.  相似文献   

3.
The crystal structures of compounds with nominal compositions Bi6FeP2O15+x (I), Bi6NiP2O15+x (II) and Bi6ZnP2O15+x (III) were determined from single-crystal X-ray diffraction data. They are monoclinic, space group I2, Z=2. The lattice parameters for (I) are a=11.2644(7), b=5.4380(3), c=11.1440(5) Å, β=96.154(4)°; for (II) a=11.259(7), b=5.461(4), c=11.109(7) Å, β=96.65(1)°; for (III) a=19.7271(5), b=5.4376(2), c=16.9730(6) Å, β=131.932(1)°. Least squares refinements on F2 converged for (I) to R1=0.0554, wR2=0.1408; for (II) R1=0.0647, wR2=0.1697; for (III) R1=0.0385, wR2=0.1023. The crystals are complexly twinned by 2-fold rotation about , by inversion and by mirror reflection. The structures consist of edge-sharing articulations of OBi4 tetrahedra forming layers in the a-c plane that then continue by edge-sharing parallel to the b-axis. The three-dimensional networks are bridged by Fe and Ni octahedra in (I) and (II) and by Zn trigonal bipyramids in (III) as well as by oxygen atoms of the PO4 moieties. Bi also randomly occupies the octahedral sites. Oxygen vacancies exist in the structures of the three compounds due to required charge balances and they occur in the octahedral coordination polyhedron of the transition metal. In compound (III), no positional disorder in atomic sites is present. The Bi-O coordination polyhedra are trigonal prisms with one, two or three faces capped. Magnetic susceptibility data for compound (I) were obtained between 4.2 and 350 K. Between 4.2 and 250 K it is paramagnetic, μeff=6.1 μB; a magnetic transition occurs above 250 K.  相似文献   

4.
Bi2O3-MoO3 system shows a large panoply of phases depending on Bi/Mo ratio, among them, the low temperature phases of the homologous series Bi2(n+2)MonO6(n+1) with n=3, 4, 5 and 6. They exhibit, alike most of the phases of this system, strong fluorite sub-network. Nevertheless, a multitechnique approach has been followed in order to solve the crystal structure of the n=3 member, i.e. Bi10Mo3O24. From ab initio indexing X-ray powder pattern cell parameters were derived. It belongs to the monoclinic system, space group C2, with cell parameters: a=23.7282(2) Å, b=5.64906(6) Å, c=8.68173(9) Å, β=95.8668(7)° with Z=2. The matrix relating this cell with the fluorite one is 4 0 1/0 1 0/ 0  and a cationic localization was derived. HRTEM allowed the cationic Bi and Mo order to be modified and specified, as well as to build up a full structural ab initio model on the basis of crystal chemistry considerations. Simultaneous Rietveld refinement of multipattern X-ray and neutron powder diffraction data taking advantage of the neutron scattering length for O location have been performed. The goodness of the model was ascertained by low reliability factors, weighted Rb=4.97% and Rf=3.21%. This complex Bi10Mo3O24 structure, with 5Bi, 2Mo and 13O in different crystallographic positions of the asymmetric unit, shows good agreement between observed and calculated patterns within the data resolution. Moreover, the determination of this structure sets the basis for the crystallographic characterization of the complete family Bi2(n+2)MonO6(n+1), whose guidelines are also evidenced in this paper.  相似文献   

5.
Four new ternary compounds Zr5M1-xPn2+x (M=Cr, Mn; Pn=Sb, Bi) were synthesized by arc-melting and annealing at 800 °C. They crystallize in the tetragonal W5Si3-type structure. The crystal structure of Zr5Cr0.49(2)Sb2.51(2) was refined from powder X-ray diffraction data by the Rietveld method (Pearson symbol tI32, tetragonal, space group I4/mcm, Z=4, a=11.1027(6) Å, c=5.5600(3) Å). Four-probe electrical resistivity measurements on sintered polycrystalline samples indicated metallic behavior. Magnetic susceptibility measurements between 2 and 300 K revealed temperature-independent Pauli paramagnetism for Zr5Cr1-xSb2+x and Zr5Cr1-xBi2+x, but a strong temperature dependence for Zr5Mn1-xSb2+x and Zr5Mn1-xBi2+x which was fit to the Curie-Weiss law for the latter with θ=-11.3 K and μeff=1.81(1) μB. Band structure calculations for Zr5Cr0.5Sb2.5 support a structural model in which Cr and Sb atoms alternate within the chain of interstitial sites formed at the centers of square antiprismatic Zr8 clusters.  相似文献   

6.
The lithium double diphosphates LiCryFe1−yP2O7 have been investigated by X-ray diffraction, SQUID measurements and vibrational spectroscopy. The Rietveld refinements based on the XRD patterns show the existence of a continuous solid solution over the whole composition range (0?y?1.0) with a continuous evolution of the monoclinic unit cell parameters (S.G. P21). The transition metal ions connect the diphosphate anions forming a three-dimensional network with channels filled by Li+ cations expected to exhibit high mobility. All compounds order magnetically at low temperatures due the Fe-Fe interactions. The ordering temperature decreases with increasing Cr content. The slope in Curie-Weiss fits to the 1/χ vs T data in the paramagnetic domain clearly shows the existence of Fe3+ and Cr3+ in their high spin states, and a ferromagnetic component is clearly detected for y=0, 0.2 and 0.4. IR spectra have been interpreted using factor group analysis. The small shift of the frequencies is due to the influence of the chromium amount. The POP angles were estimated using the Lazarev's relationship.  相似文献   

7.
Novel complex oxides Ca14Zn6Ga10O35 and Ca14Zn5.5Ga10.5O35.25 were prepared in air at 1200 °C, 72 h. Refinements of their crystal structures using X-ray powder diffraction data showed that Ca14Zn6Ga10O35 is ordered (S.G. F23, =0.0458, Rp=0.0485, Rwp=0.0659, χ2=1.88) and Ca14Zn5.5Ga10.5O35.25 disordered (S.G. F432, =0.0346, Rp=0.0601, Rwp=0.0794, χ2=2.82) variants of the crystal structure of Ca14Zn6Al10O35. In the crystal structure of Ca14Zn6Ga10O35, there are large empty voids, which could be partially occupied by additional oxygen atoms upon substitution of Zn2+ by Ga3+ as in Ca14Zn5.5Ga10.5O35.25. These oxygen atoms are introduced into the crystal structure of Ca14Zn5.5Ga10.5O35.25 only as a part of four tetrahedra (Zn, Ga)O4 groups sharing common vertex. This creates a situation where even a minor change in the chemical composition leads to considerable anion and cation disordering resulting in a change of space group from F23 (no. 196) to F432 (no. 209).  相似文献   

8.
Five series of perovskite-type compounds in the system La1−xCaxCr1−yTiyO3 with the nominal compositions y=0, x=0-0.5; y=0.2, x=0.2-0.8; y=0.5, x=0.5-1.0; y=0.8, x=0.6-1.0 and y=1, x=0.8-1 were synthesized by a ceramic technique in air (final heating 1350 °C). On the basis of the X-ray analysis of the samples with (Ca/Ti)?1, the phase diagram of the CaTiO3-LaCrIIIO3-CaCrIVO3 quasi-ternary system was constructed. Extended solid solution with a wide homogeneity range is formed in the quasi-ternary system CaCrIVO3-CaTiO3-LaCrIIIO3. The solid solution La(1−x′−y)Ca(x′+y)CrIVxCrIII(1−x′−y)TiyO3 exists by up to 0.6-0.7 mol fractions of CaCrIVO3 (x<0.6-0.7) at the experimental conditions. The crystal structure of the compounds is orthorhombic in the space group Pbnm at room temperature. The lattice parameters and the average interatomic distances of the samples within the solid solution ranges decrease uniformly with increasing Ca content. Outside the quasi-ternary system, the nominal compositions La0.1Ca0.9TiO3, La0.2Ca0.8TiO3, La0.4Ca0.6Cr0.2Ti0.8O3 and La0.3Ca0.7Cr0.2Ti0.8O3 in the system La1−xCaxCr1−yTiyO3 were found as single phases with an orthorhombic structure. In the temperature range between 850 and 1000 °C, the synthesized single-phase compositions are stable at pO2=6×10−16-0.21×105 Pa. Oxygen stoichiometry and electrical conductivity of the separate compounds were investigated as functions of temperature and oxygen partial pressure. The chemical stability of these oxides with respect to oxygen release during thermal dissociation decreases with increasing Ca-content. At 900 °C and oxygen partial pressure 1×10−15-0.21×105 Pa, the compounds with x>y (acceptor doped) are p-type semiconductors and those with x<y (donor doped) and x=y are n-type semiconductors. The type and level of electrical conductivity are functions of the concentration ratios of cations occupying the B-sites of the perovskite structures: [Cr3+]/[Cr4+] and [Ti4+]/[Ti3+]. The maximum electrical conductivity at 900 °C and pO2=10−15 Pa was found for the composition La0.1Ca0.9TiO3 (near 50 S/cm) and in air at 900 °C for La0.5Ca0.5CrO3 (close to 100 S/cm).  相似文献   

9.
Structures of the double perovskites Ba2Sr1−xCaxWO6 have been studied by the profile analysis of X-ray diffraction data. The end members, Ba2SrWO6 and Ba2CaWO6, have the space group I2/m (tilt system a0bb) and Fmm (tilt system a0a0a0), respectively. By increasing the Ca concentration, the monoclinic structure transforms to the cubic one via the rhombohedral R3¯ phase (tilt system aaa) instead of the tetragonal I4/m phase (tilt system a0a0c). This observation supports the idea that the rhombohedral structure is favoured by increasing the covalency of the octahedral cations in Ba2MM′O6-type double perovskites, and disagrees with a recent proposal that the formation of the π-bonding, e.g., d0-ion, determines the tetragonal symmetry in preference to the rhombohedral one.  相似文献   

10.
A melting and glass recrystallization route was carried out to stabilize a new tetragonal form of Bi2SiO5 with bismuth partially substituted by lanthanum. The crystal structure of Bi2−xLaxSiO5 (x∼0.1) was determined from powder X-ray and neutron diffraction data (space group I4/mmm, , c=15.227(1) Å, V=224.18 Å3, Z=2; reliability factors: RBragg=5.65%, Rp=14.6%, Rwp=16.8%, Rexp=8.3%, χ2=8.3 (X-ray) and RBragg=2.40%, Rp=8.1%, Rwp=7.5%, Rexp=4.2%, χ2=3.3 (neutrons); 11 structural parameters refined).The main effect of lanthanum substitution is to introduce, by removing randomly some bismuth 6s2 lone pairs, a structural disorder in the surroundings of (Bi2O2)2+ layers, that is in the (SiO3)2− pyroxene files arrangement. It results in a symmetry increase relatively to the parent compound Bi2SiO5, which is orthorhombic. The two structures are compared.  相似文献   

11.
The crystal structures of the two oxides Bi46M8O89 (M=P, V) have been solved from single crystals X-ray data at room temperature. Bi46P8O89 crystallizes in the monoclinic symmetry (space group C2/m) with the cell parameters , , and β=112.14(3)°. The symmetry of Bi46V8O89 is also monoclinic but the space group is P21/c with the unit-cell parameters: , , and β=107.27(3)°. Both structures derive from an oxygen deficient fluorite-type structure where the Bi and M cations (M=P, V) are ordered in the framework. The structures are characterised by isolated MO4 tetrahedra (M=P, V) which contradicts the previous results. The difference between the two structures is only due to a different order of the M atoms (M=P, V) in the fluorite-type superstructure. It will be shown that some oxygen sites are partially occupied in both structures which can explain the ion conduction properties of these phases. A structural building principle will be proposed that can explain the large domain of solid solution related to the fluorite-type observed in both systems.  相似文献   

12.
The two hitherto unknown compounds Bi14P4O31 and Bi50V4O85 were prepared by the direct solid-state reaction of Bi2O3 and (NH4)H2PO4 or V2O5, respectively. Bi14P4O31 crystallizes in a C-centred monoclinic symmetry (C2/c space group) with the unit-cell parameters: , , and β=93.63(1)° (Z=16). The symmetry of Bi50V4O85 is also monoclinic (I2/m space group) with lattice parameters of , , and β=90.14(1)° (Z=2). Both structures correspond to a fluorite-type superstructure where the Bi and P or V atoms are ordered in the framework. An idealized structural model is proposed where the structures result of the stacking of mixed atomic layers of composition [Bi14M4O31] and [Bi18O27] respectively. This new family can be formulated Bi18−4mM4mO27+4m with M=P, V and where the parameter m (0?m?1) represents the ratio of the number of [Bi14M4O31] layers to the total number of layers in the sequence. Bi14P4O31 corresponds to m=1 when Bi50V8O85 corresponds to m=1/3. In this last case, the structural sequence is simply one [Bi14V4O31] layer to two [Bi18O27] layers. As predicted by the proposed structural building principle, Bi14P4O31 is not a good ionic conductor. The conductivity at 650 °C is 4 orders of magnitude lower from those found in Bi46M8O89 (M=P, V) (m=2/3) and Bi50V4O85 (m=1/3).  相似文献   

13.
The new oxy-chloro-sulfide (Mn1−xPbx)Pb10+ySb12−yS26−yCl4+yO (x ∈ [0.2-0.3]; y ∈ [0.3-1.6]) was synthesized by dry way at 500-600 °C. A single crystal ∼Mn0.7Pb11.0Sb11.3S25.3Cl4.7O indicates a monoclinic symmetry, space group C2/m, with a = 37.480(8), b = 4.1178(8), c = 18.167(4) Å, β = 106.37(3)°, V = 2690.2(9) Å3, Z = 2. Its crystal structure was determined by X-ray single crystal diffraction, with a final R = 5.11%. Modular analysis of the crystal structure reveals a “waffle” architecture, where complex rods with lozenge section delimitate an internal channel filled by a single chain of (Mn0.7Pb0.3)Cl6 octahedra connected by opposite edges. Minimal inter-chain distances are close to 18 Å. The rod wall, two-atom thick, presents, in alternation with S atoms, Pb or (Pb,Sb) cations with prismatic coordination in the internal atom layer, while the external atom layer is constituted exclusively by Sb cations with dissymmetric square pyramidal coordination. A (Pb,Sb)2S2 fragment connects two successive rods along (2 0 1) to form a waffle-type palissadic layer. The unique O position, half filled, presents the same environment than the isolated O positions in the oxy-sulfide Pb14Sb30S54O5, or oxy-chloro-sulfides Pb18Sb20S46Cl2O and (Cu,Ag)2Pb21Sb23S55ClO. This compound belongs to a pseudo-homologous series of chalcogenides with waffle structure, ordered according to the size of their lozenge shape channel. Such a complex senary compound of the oxy-chloro-sulfide type illustrates the structural competition between three cations, on one hand, and, on the other hand, three anions. This compound is of special interest regarding the 1D distribution of magnetic Mn2+ atoms at the ∼2 nm scale.  相似文献   

14.
In this communication, we report the oxidation and reduction behavior of fluorite type solid solutions in U-Zr-O. The maximum solubility of ZrO2 in UO2 lattice could be achieved with a mild oxidizing followed by reducing conditions. The role of valency state of U is more dominating in controlling the unit cell parameters than the incorporated interstitial oxygen in the fluorite lattice. The controlled oxidation studies on U-Zr-O solid solutions led to the delineation of a new distorted fluorite lattice at the U:Zr=2:1 composition. The detailed crystal structure analysis of this ordered composition Zr0.33U0.67O2.33 (ZrU2O7) has been carried from the powder XRD data. This phase crystallizes in an orthorhombically distorted fluorite type lattice with unit cell parameters: a=5.1678(2), b=5.4848(2), c=5.5557(2) Å and V=157.47(1) Å3 (Space group: Cmcm, No. 63). The metal ions have distorted cubical polyhedra with anion similar to the fluorite structure. The excess anions are occupied in the interstitial (empty cubes) of the fluorite unit cell. The crystal structure and chemical analyses suggest approximately equal fractions of U4+ and U6+ in this compound. The details of the thermal stability as well as kinetics of formation and oxidation of ZrU2O7 are also studied using thermogravimetry.  相似文献   

15.
Structural analyses as well as low temperature thermal conductivity is reported for the binary phase Na1−xGe3+z. Specimens were characterized by thermal analysis, conventional and synchrotron powder X-ray diffraction, neutron powder diffraction, 23Na nuclear magnetic resonance spectroscopy, and electrical and thermal transport measurements. With structural characteristics qualitatively analogous to some aluminum-silicate zeolites, the crystal structure of this phase exhibits an unconventional covalently bonded tunnel-like Ge framework, accommodating Na in channels of two different sizes. Observed to be non-stochiometric, Na1−xGe3+z concurrently exhibits substantial structural disorder in the large channels and a low lattice thermal conductivity, of interest in the context of identifying novel low thermal conductivity intermetallics for thermoelectric applications.  相似文献   

16.
Attempts to prepare alkaline metal uranyl niobates of composition A1−xUNbO6−x/2 by high-temperature solid-state reactions of A2CO3, U3O8 and Nb2O5 led to pure compounds for x=0 and A=Li (1), Na (2), K (3), Cs (4) and for x=0.5 and A=Rb (5), Cs (6). Single crystals were grown for 1, 3, 4, 5, 6 and for the mixed Na0.92Cs0.08UNbO6 (7) compound. Crystallographic data: 1, monoclinic, P21/c, a=10.3091(11), b=6.4414(10), c=7.5602(5) Å, β=100.65(1), Z=4, R1=0.054 (wR2=0.107); 3, 5 and 7 orthorhombic, Pnma, Z=8, with a=10.307(2), 10.272(4) and 10.432(3) Å, b=7.588(1), 7.628(3) and 7.681(2) Å, c=13.403(2), 13.451(5) and 13.853(4) Å, R1=0.023, 0.046 and 0.036 (wR2=0.058, 0.0106 and 0.088) for 3, 5 and 7, respectively; 6, orthorhombic, Cmcm, Z=8, and a=13.952(3), b=10.607(2) Å, c=7.748(2) Å, R1=0.044 (wR2=0.117).The crystal structure of 1 is characterized by layers of uranophane sheet anion topology parallel to the (100) plane. These layers are formed by the association by edge-sharing of chains of edge-shared UO7 pentagonal bipyramids and chains of corner-shared NbO5 square pyramids alternating along the [010] direction. The Li+ ions are located between two consecutive layers and hold them together; the Li+ ions and two layers constitute a neutral “sandwich” {(UNbO6)-(Li)22+-(UNbO6)}. In this unusual structure, the neutral sandwiches are stacked one above another with no formal chemical bonds between the neutral sandwiches.The homeotypic compounds 3, 5, 6, 7 have open-framework structures built from the association by edge-sharing in two directions of parallel chains of edge-shared UO7 pentagonal bipyramids and ribbons of two edge-shared NbO6 octahedra further linked by corners. In 3, 5 and 7, the mono-dimensional large tunnels created in the [001] direction by this arrangement can be considered as the association by rectangular faces of two columns of triangular face-shared trigonal prisms of uranyl oxygens. In 3 and 7, all the trigonal prisms are occupied by the alkaline metal, in 5, they are half-occupied. In 6, the polyhedral arrangement is more symmetric and the tunnels created in the [010] direction are built of face-sharing cubes of uranyl oxygens totally occupied by the Cs atoms. This last compound well illustrates the structure-directing effect of the conterion.  相似文献   

17.
The orthorhombic-tetragonal phase transition in the perovskite series Sr1−xCaxMnO3 0.4?x?0.6 has been studied by synchrotron X-ray powder diffraction. At room temperature the Ca rich oxides x?0.45 have the orthorhombic Pbnm superstructure whereas Sr0.6Ca0.4MnO3 is two phases with both tetragonal I4/mcm and orthorhombic Pbnm. Analysis of the octahedral tilts suggest the co-existence of these two phases is a consequence of a first-order I4/mcm to Pbnm transition. The evolution of the structure of Sr0.5Ca0.5MnO3 with temperature is also described and this is found to evolve from orthorhombic to tetragonal and ultimately cubic.  相似文献   

18.
The physical properties including magnetic susceptibility, specific heat, and electrical resistivity of single crystals are reported for the compound CePd1+xAl6−x (x=0.5) which crystallizes in the tetragonal SrAu2Ga5-type structure (space group P4/mmm). The compound was grown from an excess of molten Al flux from the respective elements and the crystal structure was established from single-crystal X-ray diffraction. Anomalies in the low temperature specific heat Cp(T) and electrical resistivity ρ(T) show that the compound undergoes ferromagnetic order at TC=2.8 K. In the ordered state, CePd1.5Al5.5 displays heavy fermion behavior with a Sommerfeld coefficient of ca. 500 mJ/mol-K2.  相似文献   

19.
We report the synthesis of SrMn1−xGaxO3−δ perovskite compounds and describe the dependence of their phase stability and structural and physical properties over extended cation and oxygen composition ranges. Using special synthesis techniques derived from thermogravimetric measurements, we have extended the solubility limit of random substitution of Ga3+ for Mn in the cubic perovskite phase to x=0.5. In the cubic perovskite phase the maximum oxygen content is close to 3−x/2, which corresponds to 100% Mn4+. Maximally oxygenated solid solution compounds are found to order antiferromagnetically for x=0-0.4, with the transition temperature linearly decreasing as Ga content increases. Increasing the Ga content introduces frustration into the magnetic system and a spin-glass state is observed for SrMn0.5Ga0.5O2.67(3) below 12 K. These properties are markedly different from the long-range antiferromagnetic order below 180 K observed for the layer-ordered compound Sr2MnGaO5.50 with nominally identical chemical composition.  相似文献   

20.
The influence of Zn-doping on the crystal structure and magnetic properties of the spin ladder compounds La2Cu2O5 (4-leg) and La8Cu7O19 (5-leg) have been investigated. The La2(Cu1−xZnx)2O5 and La8(Cu1−xZnx)7O19 solid solutions were obtained as single phases with x=0-0.1 via the solid-state reaction method in the temperature range between 1005-1010 °C and 1015-1030 °C in oxygen and air atmospheres, respectively. The lattice parameters a and c of the monoclinic crystal structures as well as the unit cell volume V increase with increasing x, while b and β decrease for both series. The magnetic susceptibilities χ of both series show a very similar behavior on temperature as well as on Zn-doping, which is supposed to be due to the similar Cu-O coordination in both La2Cu2O5 and La8Cu7O19. For low Zn-doping (x?0.04), a spin-chain like behavior is found. This quasi-one-dimensional behavior is strongly suppressed in both series for x?0.04. Here, the maximum (characteristic for spin chains) in χ(T) disappears and χ(T) decreases monotonically with increasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号