首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ceramics can play a remarkable role in the engineering of intermediate temperature solid oxide fuel cells (IT-SOFCs) capable of meeting the ambitious targets of reduced cost and improved lifetime. While mixed ionic-electronic conductors such as LaxSr1−xCoyFe1−yO3−δ are being used as volumic cathodes to increase the catalytic performance of these components, adequate microstructures are also an important requirement for optimal performance, particularly at lower operating temperatures. This work is devoted to the fabrication of La0.6Sr0.4Co0.2Fe0.8O3−δ films on Ce0.9Gd0.1O2−δ substrates by electrostatic spray deposition (ESD) and to the characterization of the microstructural dependence on the deposition conditions. A wide variety of microstructures ranging from dense to porous, with particular features such as reticulation and micro-porosity, were obtained by varying the ESD deposition parameters: nozzle-to-substrate distance (15, 30, 43, 45, and 58 mm), solution flow rate (0.34 and 1.5 mL/h), and substrate temperature (300, 350, 400 and 450 °C). The correlation between deposition parameters and resulting microstructures was systematically studied and put into evidence.  相似文献   

2.
The phase equilibria in the Ln-Ba-Co-O (Ln=Nd, Sm) systems were systematically studied at 1100 °C in air. The homogeneity ranges and crystal structure of the solid solutions: Ln2−xBaxO3−δ (0<x≤0.1 for Ln=Nd and 0<x≤0.3 for Ln=Sm), Nd3−yBayCo2O7 (0.70≤y≤0.80), BaCo1−zSmzO3−δ (0.1≤z≤0.2) were determined by X-ray diffraction of quenched samples. The values of oxygen content (5+δ) for slowly cooled LnBaCo2O5+δ (Ln=Nd, Sm) samples were estimated as 5.73 for Ln=Nd, and 5.60 for Ln=Sm. The unit cell parameters were refined using Rietveld full-profile analysis. It was shown that NdBaCo2O5.73 possesses tetragonal structure and SmBaCo2O5.60 - orthorhombic structure. The projections of isothermal-isobaric phase diagrams for the Ln-Ba-Co-O (Ln=Nd, Sm) systems to the compositional triangle of metallic components were presented.  相似文献   

3.
The iron rich part of the system was examined in the temperature range of 1200-1380 °C in air, with focus on the solid solutions of M-type hexaferrites. Samples of suitable compositions were studied by electronprobe microanalysis (EPMA). Substituted Sr-hexaferrites in the system Sr-La-Co-Fe-O do not follow the 1:1 substitution mechanism of La/Co in M-type ferrites. Due to the presence and limited Co2+-incorporation Fe3+-ions are reduced to Fe2+ within the crystal lattice to obtain charge balance. In all examined M-type ferrites divalent iron is formed, even at 1200 °C. The substitution principle Sr2++Fe3+↔La3++(Fe2+, Co2+) yields to the general substitution formula for the M-type hexaferrite Sr2+1-xLa3+xFe2+x-yCo2+yFe3+12-xO19 (0≤x≤1 and 0≤yx). In addition Sr/La-perovskiteSS (SS=solid solution), Co/Fe-spinelSS, hematite and magnetite are formed. Sr-hexaferrite exhibits at 1200 °C a limited solid solution with small amounts of Fe2+ (SrFe12O19↔Sr0.3La0.7Co0.5Fe2+0.2Fe11.3O19). At 1300 and 1380 °C a continuous solid solution series of the M-type hexaferrite is stable. SrFe12O19 and LaCo0.4Fe2+0.6Fe11O19 are the end members at 1300 °C. The maximum Fe2+O content is about 13 mol% in the M-type ferrite at 1380 °C (LaCo0.1Fe2+0.9Fe11O19).  相似文献   

4.
The phase relations in the pseudo-binary system SrO-Fe2O3 have been investigated in air up to 1150°C by means of powder X-ray diffraction and thermal analysis. Sr3Fe2O7−δ, SrFeO3−δ and SrFe12O19 are stable phases in the entire investigated temperature region, whereas Sr2FeO4−δ and Sr4Fe3O10−δ decompose above 930±10°C and 850±25°C, respectively. Sr4Fe6O13±δ is entropy-stabilized relative to SrFeO3−δ and SrFe12O19 above 775±25°C. Extended solid-solution SrxFeO3−δ was demonstrated. On the Fe-deficient side, the extent of solid solubility appeared to decrease gradually with temperature, whereas an abrupt decrease due to formation of Sr4Fe6O13±δ was observed above 775°C on the Sr-deficient side.  相似文献   

5.
Phase equilibria in systems La-M-Fe-O (M = Ca or Sr) at 1100° in air were studied. The homogeneity ranges and structures of solid solutions La1 ? x M x FeO3 ? δ (0 ≤ x ≤ 0.3 for M = Ca and 0 ≤ x ≤ 0.8 for M = Sr), Sr2 ? y La y FeO4 ? δ (0.8 ≤ y ≤ 1.0), and Sr3 ? z La z Fe2O7 ? δ (0 ≤ z ≤ 0.2) were determined using X-ray powder diffraction. The structural parameters of complex oxides were refined using the full-profile Rietveld technique. Correlations between the unit cell parameters and the compositions of solid solutions were derived. Isobaric/isothermal phase diagrams were constructed for systems La-M-Fe-O (M = Ca or Sr) at 1100°C in air.  相似文献   

6.
The series Ba6−xEuxTi2+xTa8−xO30 and Ba4−yKyEu2Ti4−yTa6+yO30 have been synthesized at 1400°C in air. They exhibit efficient excitation at about 400 nm and typical emission of Eu3+ at about 580-620 nm, form solid solutions within 0.0?x?2.0 and 0?y?4 respectively, and crystallized in P4/mbm at room temperature with Eu atoms occupied at centrosymmetric site (0, 0, 0). Their conductivity is very low (2.8×10−6 Ω−1 cm−1 at 740°C for Ba6Ti2Ta8O30).  相似文献   

7.
Aluminum incorporation in the rhombohedrally distorted perovskite lattice of (La0.5Sr0.5)1−xFe1−yAlyO3−δ (x=0-0.05, y=0-0.30) decreases the unit cell volume and partial ionic and p-type electronic conductivities, while the oxygen nonstoichiometry and thermal expansion at 900-1200 K increase on doping. The creation of A-site cation vacancies has an opposite effect on the transport properties of Al-substituted ceramics. The maximum A-site deficiency tolerated by the (La,Sr)(Fe,Al)O3−δ structure is however limited, close to 3-4%. The Mössbauer spectroscopy revealed progressive localization of electron holes and a mixed charge-compensation mechanism, which results in higher average oxidation state of iron when Al3+ concentration increases. The average thermal expansion coefficients of (La0.5Sr0.5)1−xFe1−yAlyO3−δ are (12.2-13.0)×10−6 K−1 at 300-900 K and (20.1-30.0)×10−6 K−1 at 900-1200 K in air. The steady-state oxygen permeability (OP) of dense Al-containing membranes is determined mainly by the bulk ionic conductivity. The ion transference numbers at 973-1223 K in air, calculated from the oxygen permeation and faradaic efficiency (FE) data, vary in the range 1×10−4-3×10−3, increasing with temperature.  相似文献   

8.
Misfit-type Ca3−xLaxCo4O9+δ (x=0, 0.3) oxides were synthesised to be evaluated as possible cathode materials for proton conducting fuel cells (PCFCs) based on BaCe0.9Y0.1O3−δ (BCY10) dense ceramic electrolyte. The electrical conductivity value of Ca2.7La0.3Co4O9+δ (σ≈53 S cm-1 at 600 °C) is in the range of usually required value for a cathode application (about 50-100 S cm-1). In order to test the performance of each compound as cathode material, impedance measurements were carried out on Ca3−xLaxCo4O9+δ/BaCe0.9Y0.1O3−δ/Ca3−xLaxCo4O9+δ symmetrical half cells over the temperature range 400-800 °C under wet air. A promising electrocatalytic activity has been observed with both compounds Ca3Co4O9+δ and Ca2.7La0.3Co4O9+δ. Factually, the area specific resistance obtained was about 2.2 Ω cm2 at 600 °C.  相似文献   

9.
The La(Mn0.5Co0.5)1−xCuxO3−δ series with x=0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 was synthesized by the Pechini method to obtain insight into the phase formation in the quasi-ternary LaMnO3-LaCoO3-“LaCuO3” system caused by the instability of LaCuO3 under ambient conditions. After sintering at 1100°C some remarkable results were obtained: LaMn0.3Co0.3Cu0.4O3−δ crystallized as a single phase in the orthorhombic perovskite structure typical of LaCuO3. Among the synthesized compositions this compound showed the highest electrical conductivity in air at 800°C (155 S cm−1) and also the highest thermal expansion coefficient (α30−800°C=15.4×10−6 K−1). The LaCuO3−δ composition also crystallized as a single phase but in a monoclinic structure although previous investigations have shown that other phases are preferably formed after sintering at 1100°C. The electrical conductivity and thermal expansion coefficient were the lowest within the series of compositions, i.e. 9.4 S cm−1 and 11.9×10−6 K−1, respectively.  相似文献   

10.
Structural and magnetic studies are presented for the perovskite type Sr1−xLaxCo0.5Fe0.5O3−δ (0?x?0.5) materials annealed under moderately high-oxygen pressures of ∼200 atm. A detailed analysis of the room temperature neutron time-of-flight diffraction data reveals that the crystal structure of the sample SrCo0.5Fe0.5O2.89(1), previously described as vacancy-disordered cubic, is similar to the formerly reported, oxygen-vacancy ordered Sr8Fe8O23 compound, i.e. Sr8Co4Fe4O23 is tetragonal with the I4/mmm symmetry. With an increase of the La content the studied materials become nearly oxygen stoichiometric and a lowering of the crystal symmetry is observed from cubic (x=0.1 and 0.2) to tetragonal I4/mcm (x=0.3 and 0.4), and finally to monoclinic I12/c1 (x=0.5). Low-temperature structural and magnetic measurements show a ferromagnetic ordering with the maximum Curie temperature near 290 K at x=0.2.  相似文献   

11.
In situ X-ray diffraction has been used to investigate the phase stability of barium strontium cobalt iron oxide (BSCF) with the formula Ba0.5Sr0.5Fe1−xCoxO3−δ (x=0, 0.2, 0.4, 0.6, 0.8, and 1). The thermal decomposition processes in both low partial pressures of oxygen (air −10−5 atm pO2) and in reducing conditions have been detailed. BSCF manifests excellent stability down to 10−5 atm pO2; however, it decomposes through a complex series of oxides under reducing conditions. Increasing the cobalt content results in a decrease in the temperature range of stability of the material under 4% H2 in N2, with the initial decomposition taking place at 375, 425, 550, 600, 650 and 675 °C, for x=1, 0.8, 0.6, 0.4, 0.2 and 0, respectively. Further, the thermal expansion is a strong function of the oxygen activity and Co content. The x=0, 1 end member, BSC, undergoes a phase transition from rhombohedral to cubic symmetry at ∼800 °C under 10−5 atm pO2, resulting in an ideal perovskite with a=3.9892(3) Å at room temperature.  相似文献   

12.
The effect of replacing Co3+ by Ga3+ and Fe3+ in the perovskite-related tetragonal phase Sr0.75Y0.25CoO2.625 with unit cell parameters: a=2ap, and c=4ap (314 phase) has been investigated. The 314 phase is formed by Sr0.75Y0.25Co1−xMxO2.625+δ, with x?0.375 for M=Ga and x?0.625 for M=Fe. High-resolution transmission electron microscopy and electron diffraction revealed frequent microtwinning in the iron-containing compounds, in contrast to the Ga-substituted 314 phases. Diffraction experiments and electron microscope images indicated that at higher Fe contents, 0.75?x?0.875, a disordered cubic perovskite structure forms. The crystal structures of Sr0.75Y0.25Co0.75Ga0.25O2.625 and Sr0.75Y0.25Co0.5Fe0.5O2.625+δ were refined using neutron powder diffraction data. It was found that the oxygen content of Sr0.75Y0.25Co0.5Fe0.5O2.625+δ is higher than in Fe-free 314 phase, so that δ corresponds to 0.076, whereas δ=0 in Sr0.75Y0.25Co0.75Ga0.25O2.625+δ. Magnetization measurements on the unsubstituted Sr0.7Y0.3CoO2.62 and Ga-substituted Sr0.75Y0.25Co0.75Ga0.25O2.625 compounds indicate the presence of a ferromagnetic-like contribution to the measured magnetization at 320 and 225 K, respectively, while replacing Co by Fe leads to the suppression of this contribution. A neutron diffraction study shows that the Sr0.75Y0.25Co0.5Fe0.5O2.625+δ compound is G-type antiferromagnetic at room temperature, whereas Sr0.75Y0.25Co0.75Ga0.25O2.625 does not exhibit magnetic ordering at room temperature.  相似文献   

13.
Photocatalysts of nominal composition (Ti1−xCox)O2−δ with 0.001?x?0.05 were prepared via a sol-gel technique followed by air firing (200-1000 °C). The incorporation of cobalt inhibited crystal growth and slightly raised the anatase to rutile transformation temperature (∼700 °C). An amorphous component was invariably significant with the maximum content (41-53 wt%) appearing simultaneously with the removal of anatase, suggesting that rutile crystallizes via an aperiodic structure. While the introduction of cobalt shifted the apparent band gap to visible light energies this did not enhance performance as there was limited miscibility of cobalt in titania, non-catalytic secondary phases were present, and active Ti3+ sites were displaced by cobalt.  相似文献   

14.
LaFe1−xNixO3−δ (x=0.1−1.0) perovskites were synthesized via citrate route. The p(O2)-stability of the perovskite phases LaFe1−xNixO3−δ has been evaluated at 1100 °C based on the results of XRD analysis of powder samples annealed at various p(O2) and quenched to room temperature. The isothermal LaFeO3−δ-“LaNiO3−δ” cross-section of the phase diagram of the La-Fe-Ni-O system has been proposed in the range of oxygen partial pressure −15<log p(O2)/atm≤0.68. The unit cell parameters of orthorhombic perovskites O-LaFe1−xNixO3−δ increase with decrease in p(O2) at fixed composition x. This behavior is explained on the basis of size factor. The decomposition temperatures of rhombohedral phases R-LaFe1−xNixO3−δ for x=0.7, 0.8, 0.9 and 1.0 in air were determined as 1137, 1086, 1060 and 995 °C, respectively.  相似文献   

15.
The phases LaxSr2−xFeyRu1−yOδ (x=0.2-0.8; y=0.6-0.9) have been synthesized by solid-state techniques and yield tetragonal structures with I4/mmm symmetry. The oxygen stoichiometry and high-temperature structures have been examined using diffraction techniques and in situ Mössbauer spectroscopy at temperatures up to ∼600°C. Furthermore, new reduced phases that adopt structures with Immm symmetry have been discovered. Unusual coordination numbers have been determined for the most highly reduced samples with square planar coordination evident for the B site cations. The reduced orthorhombic Immm phases were found to readily reoxidize in air to the tetragonal I4/mmm structure at relatively low temperatures of only ∼500°C.  相似文献   

16.
A series of Al-substituted YBa(Co1−xAlx)4O7+δ samples was synthesized and characterized with respect to the capability to store large amounts of oxygen at low temperatures (at 200-400 °C) and the phase decomposition upon heating under oxidizing conditions at higher temperatures (above 550 °C). It was revealed that increasing the Al-substitution level up to x≈0.10 boosts up the phase-decomposition temperature from ∼550 to ∼700 °C, while the unique oxygen absorption/desorption characteristics remain nearly the same as those of the pristine YBaCo4O7+δ phase. The maximum amount of excess oxygen absorbed by the Al-substituted YBa(Co1−xAlx)4O7+δ samples was determined to be as large as δ≈1.45 for x=0.10 (in 100 atm O2 at 320 °C). Isothermal annealing experiments carried out for the same x=0.10 phase at 300 °C revealed that it could be reversibly charged and discharged with 1.2 oxygen atoms per formula unit by switching the gas flow from N2 to O2 and vice versa.  相似文献   

17.
A series of oxygen-deficient n=2 Ruddlesden-Popper phases, Sr3Fe2−xCoxO7−δ (0.25≤x≤1.75), were prepared by solid-state reactions. Temperature-dependent susceptibility and field-dependent magnetization data indicate that for x≥0.25 the dominant magnetic interactions are ferromagnetic. The onset of strong ferromagnetic interactions is evident at ∼200 K, and a transition to a cluster-glass state is observed for all compositions below ∼45 K. The temperature variation of resistivity for all the compounds shows variable-range hopping behavior with two different localization energy scales: one for T<40 K and another for T>80 K. Large negative magnetoresistance (the largest MR ∼−65% for x=0.25) is observed for all phases. The magnetic susceptibility, Mössbauer and X-ray absorption near-edge spectroscopy data indicate that the formal oxidation state of Fe is close to 4+. The key role of d delocalization in the Sr3Fe2−xCoxO7−δ system is compared to the Sr3Fe2−xMnxO7−δ series, where d localization dominates the properties.  相似文献   

18.
The non-linear thermal expansion behaviour observed in Ce1−yPryO2−δ materials can be substantially controlled by Gd substitution. Coulometric titration shows that the charge compensation mechanism changes with increasing x, in the system GdxCe0.8−xPr0.2O2−δ. For x=0.15, charge compensation is by vacancy formation and destabilises the presence of Pr4+. At x=0.2, further Gd substitution is charge compensated by additionally raising the oxidation state of Pr rather than solely the creation of further oxygen ion vacancies. Oxygen concentration cell e.m.f. measurements in an oxygen/air potential gradient show that increasing Gd content decreases ionic and electronic conductivities. Ion transference numbers measured under these conditions show a positive temperature dependence, with typical values to=0.90,0.98 and 0.80 for x=0,0.15 and 0.2, respectively, at 950 °C. These observations are discussed in terms of defect association. Oxygen permeation fluxes are limited by both bulk ambipolar conductivity and surface exchange. However, the composition dependent trends in permeability are shown to be dominated by ambipolar conductivities, and limited by the level of electronic conductivity. At the highest temperatures, oxygen permeability of composition x=0.2 approaches that of composition x=0, Ce0.8Pr0.2O2−δ, with specific oxygen permeability values approximately 2×10−9 mol s−1 cm−1 at 950 °C, but offering much better thermal expansion properties.  相似文献   

19.
Interstitial molybdenum-tungsten, vanadium-tungsten and vanadium-molybdenum-tungsten oxynitrides in the solid solution series Mo1−zWz(OxNy) and V1−zWz(OxNy) (z=0, 0.2, 0.4, 0.5, 0.6, 0.8, 1), and V1−uzMouWz(OxNy) (u, z=0.2, 0.33, 0.4, 0.6; u+z<1), have been obtained by ammonolysis of precursors resulting from the freeze-drying of aqueous solutions of the metal salts (NH4VO3, (NH4)6Mo7O24·4H2O and (NH4)6W12O39·18H2O). A study of the influence of the preparative variables on the outcomes of this procedure is presented. Compounds in the Mo1−zWz(OxNy) series are prepared as single phases by ammonolysis of the respective freeze-dried precursors (during 2 h) at different temperatures between 973 and 1023 K, optimised for each composition, followed by slow cooling of the samples (except for the Mo-only containing phase, in which fast cooling has been used). Compounds in the V1−zWz(OxNy) and V1−uzMouWz(OxNy) series are prepared as single phases by ammonolysis (during 2 h) of crystalline precursors (as resulting from thermal treatment in air at 873 K, during 12 h, of the freeze-dried precursors) at 1073 K, followed by slow cooling of the samples. All the compounds in these series have the rock-salt crystal structure, in which the metal atoms are in an fcc arrangement, with non-metal atoms occupying octahedral interstitial positions. The materials have been characterized by X-ray powder diffraction, elemental analysis, scanning electron microscopy and magnetic measurements.  相似文献   

20.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号