首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

2.
A new quaternary supramolecular complex (Hg2As)2 (CdI4) (1) has been prepared by the solid-state reaction and structurally characterized by single crystal X-ray diffraction analysis. Compound 1 crystallizes in the space group P21 of the monoclinic system with two formula units in a cell: a=7.945(4), b=12.934(6), c=8.094(4) Å, β=116.898°(1), V=741.7(6) Å3. The structure of 1 is characterized by a tridymite-like three-dimensional cationic framework, which is composed of mercury and arsenic atoms, with the channels being occupied by discrete CdI42− tetrahedral guest-anions. The optical properties were investigated in terms of the diffuse reflectance and Fourier transform infrared spectra. The electronic band structure along with density of states (DOS) calculated by DFT method indicates that the present compound is a semiconductor with a direct band gap, and that the optical absorption is mainly originated from the charge transitions from I-5p and As-4p to Cd-5s and Hg-6s states.  相似文献   

3.
We presented a theoretical study of electronic band structure of three compounds ZnAl2Te4, ZnGa2Te4 and ZnIn2Te4 using pseudo potential method within density functional theory. Calculated band structures show that all band gaps are direct with at Γ with values of 1.639eV for ZnAl2Te4, 1.026eV for ZnGa2Te4and 0.836eV ZnIn2Te4. The linear properties based on dielectric function and non-linear optical properties based on second harmonic generation (SHG) were computed. The origin of four critical points (peaks) determined from the second derivative of the imaginary part of the dielectric function is elucidated. The use of individual k-points and individual combination of valence and conduction bands dependent matrix of the dielectric function and the nonlinear optical susceptibility allowed to a precise determination of inter band optical transitions. Indeed, inter-band analysis shows the high intensity of non-linear effect compared to linear effect. Moreover, non-linear inter-band optical transitions involve lower valence bands and higher conduction bands.  相似文献   

4.
A detailed theoretical study of structural, electronic, elastic, thermodynamic and optical properties of rutile type MgF2 has been carried out by means of first-principles Density Functional Theory (DFT) calculations using plane wave pseudo-potentials within the local density approximation and generalized-gradient approximation for the exchange and correlation functionals. The calculated ground state properties and elastic constants agree quite well with experimental values. From the calculated elastic constants we conclude that MgF2 is relatively hard when compared to other alkaline-earth fluorides and ductile in nature. The thermodynamic properties such as heat capacity, entropy, free energy, phonon density of states and Debye temperatures are calculated at various temperatures from the lattice dynamical data obtained through the quasi-harmonic Debye model. From free energy and entropy it is found that the system is thermodynamically stable up to 1200 K. The imaginary part of the calculated dielectric function ε2(ω) could reproduce the six prominent peaks which are observed in experiment. From the calculated ε(ω), other optical properties such as refractive index, reflectivity and electron energy-loss spectrum are obtained up to the photon energy range of 30 eV.  相似文献   

5.
The new compound K2CuSbS3 has been synthesized by the reaction of K2S, Cu, Sb, and S at 823 K. The compound crystallizes in the Na2CuSbS3 structure type with four formula units in space group P21/c of the monoclinic system in a cell at 153 K of a=6.2712 (6) Å, b=17.947 (2) Å, c=7.4901 (8) Å, β=120.573 (1)°, and V=725.81 (12) Å3. The structure contains two-dimensional layers separated by K atoms. Each layer is built from CuS3 and SbS3 units. Each Cu atom is pyramidally coordinated to three S atoms with the Cu atom about 0.4 Å above the plane of the S atoms. Each Sb atom is similarly coordinated to three S atoms but is about 1.1 Å above its S3 plane. First-principles calculations indicate an indirect band gap of 1.9 eV. These calculations also indicate that there is a bonding interaction between the Cu and Sb atoms. An optical absorption measurement performed with light perpendicular to the (0 1 0) crystal face of a red block-shaped crystal of K2CuSbS3 indicates an experimental indirect band gap of 2.2 eV.  相似文献   

6.
Divalent metal tungstates, MWO4, with wolframite (M=Zn and Mg) and scheelite (M=Ca and Sr) structures were prepared using a conventional solid state reaction method. Their electronic band structures were investigated by a combination of electronic band structure calculations and electrochemical measurements. From these investigations, it was found that the band structures (i.e. band positions and band gaps) of the divalent metal tungstates were significantly influenced by their crystal structural environments, such as the W-O bond length. Their photovoltaic properties were evaluated by applying to the working electrodes for dye-sensitized solar cells. The dye-sensitized solar cells employing the wolframite-structured metal tungstates (ZnWO4 and MgWO4) exhibited better performance than those using the scheelite-structured metal tungstates (CaWO4 and SrWO4), which was attributed to their enhanced electron transfer resulting from their appropriate band positions.  相似文献   

7.
The lanthanide coinage-metal diarsenides LnTAs2 (Ln=La, Ce-Nd, Sm; T=Ag, Au) have been reinvestigated and their structures have been refined from single crystal X-ray data. Two different distortion variants of the HfCuSi2 type are found: PrAgAs2, NdAgAs2, SmAgAs2, GdAgAs2, TbAgAs2, NdAuAs2 and SmAuAs2 crystallize as twofold superstructures in space group Pmcn with the As atoms of their planar layers forming zigzag chains, whereas LaAgAs2, CeAgAs2 and PrAuAs2 adopt a fourfold superstructure (space group Pmca) with cis-trans chains of As atoms. The respective atomic positions can be derived from the HfCuSi2 type by group-subgroup relations. The compounds with zigzag chains of As atoms exhibit metallic behaviour while those with cis-trans chains are semiconducting as measured on powder pellets. The majority of the compounds including 4f elements show antiferromagnetic ordering at TN<20 K.  相似文献   

8.
Atomic and electronic structures of R2O3(ZnO)3 (R=Al, Ga, and In), which are included in homologous series of compounds, are investigated using first-principles calculations based on density functional theory. Three models with different R atom arrangements in the five-fold and four-fold coordination sites are examined. Al and Ga prefer the five-fold coordination sites. The formation energies are much larger than those of the competing phases, ZnR2O4, with a normal spinel structure. On the other hand, In2O3(ZnO)3 shows no clear site preference and can be more stable than the spinel at high temperatures when configurational entropy contribution is taken into account. Electronic states near the conduction band bottom are mainly composed of Zn-4s orbital in Al2O3(ZnO)3, while the contributions of Ga-4s and In-5s are comparable to Zn-4s in Ga2O3(ZnO)3 and In2O3(ZnO)3.  相似文献   

9.
Reduced titanates in the ATi2O4 (A=Li, Mg) spinel family exhibit a variety of interesting electronic and magnetic properties, most notably superconductivity in the mixed-valence spinel, Li1+xTi2−xO4. The sodium and calcium analogs, NaTi2O4 and CaTi2O4, each differ in structure, the main features of which are double rutile-type chains composed of edge-sharing TiO6 octahedra. We report for the first time, the properties and band structures of these two materials. XANES spectroscopy at the Ti K-edge was used to probe the titanium valence. The absorption edge position and the pre-edge spectral features observed in the XANES data confirm the assignment of Ti3+ in CaTi2O4 and mixed-valence Ti3+/Ti4+ in NaTi2O4. Temperature-dependent resistivity and magnetic susceptibility studies are consistent with the classification of both NaTi2O4 and CaTi2O4 as small band-gap semiconductors, although changes in the high-temperature magnetic susceptibility of CaTi2O4 suggest a possible insulator-metal transition near 700 K. Band structure calculations agree with the observed electronic properties of these materials and indicate that while Ti-Ti bonding is of minimal importance in NaTi2O4, the titanium atoms in CaTi2O4 are weakly dimerized at room temperature.  相似文献   

10.
The isostructural ternary silicides M2Cr4Si5 (M=Ti, Zr, Hf) were prepared by arc-melting of the elemental components. The single-crystal structure of Zr2Cr4Si5 was determined by X-ray diffraction (Pearson symbol oI44, orthorhombic, space group Ibam, Z=4, a=7.6354(12) Å, b=16.125(3) Å, c=5.0008(8) Å). Zr2Cr4Si5 adopts the Nb2Cr4Si5-type structure, an ordered variant of the V6Si5-type structure. It consists of square antiprisms that have Zr and Cr atoms at the corners and Si atoms at the centers; they share opposite faces to form one-dimensional chains 1[Zr4/2Cr4/2Si] surrounded by additional Si atoms and extending along the c direction. In a new interpretation of the structure, additional Cr atoms occupy interstitial octahedral sites between these chains, clarifying the relation between this structure and that of Ta4SiTe4. The formation of short Si-Si bonds in Zr2Cr4Si5 is contrasted with the absence of Te-Te bonds in Ta4SiTe4. The compounds M2Cr4Si5 (M=Ti, Zr, Hf) exhibit metallic behavior and essentially temperature-independent paramagnetism. Bonding interactions were analyzed by band structure calculations, which confirm the importance of Si-Si bonding in these metal-rich compounds.  相似文献   

11.
Pr3+-doped perovskites R1/2Na1/2TiO3:Pr (R=La, Gd, Lu, and Y) were synthesized, and their structures, optical absorption and luminescent properties were investigated, and the relationship between structures and optical properties are discussed. Optical band gap of R1/2Na1/2TiO3 increases in the order R=La, Gd, Y, and Lu, which is primarily due to a decrease in band width accompanied by a decrease in Ti-O-Ti bond angle. Intense red emission assigned to f-f transition of Pr3+ from the excited 1D2 level to the ground 3H4 state upon the band gap photo-excitation (UV) was observed for all compounds. The wavelength of emission peaks was red-shifted in the order R=La, Gd, Y, and Lu, which originates from the increase in crystal field splitting of Pr3+. This is attributed to the decrease in inter-atomic distances of Pr-O together with the inter-atomic distances (R, Na)-O, i.e., increase in covalency between Pr and O. The results indicate that the luminescent properties in R1/2Na1/2TiO3:Pr are governed by the relative energy level between the ground and excited state of 4f2 for Pr3+, and the conduction and valence band, which is primarily dependent on the structure, e.g., the tilt of TiO6 octahedra and the Pr-Ti inter-atomic distance and the site symmetry of Pr ion.  相似文献   

12.
A new quaternary lanthanide alkaline-earth tellurium(IV) oxide, La2Ba(Te3O8)(TeO3)2, has been prepared by the solid-state reaction and structurally characterized. The compound crystallizes in monoclinic space group C2/c with a=19.119(3), b=5.9923(5), c=13.2970(19) Å, β=107.646(8)°, V=1451.7(3) Å3 and Z=4. La2Ba(Te3O8)(TeO3)2 features a 3D network structure in which the cationic [La2Ba(TeO3)2]4+ layers are cross-linked by Te3O84− anions. Both band structure calculation by the DFT method and optical diffuse reflectance spectrum measurements indicate that La2Ba(Te3O8)(TeO3)2 is a wide band-gap semiconductor.  相似文献   

13.
We report about the LMTO-ASA band structure, ELF and COHP calculations for a number of alkali metal rare earth tellurides of the formulas ALnTe4 (A=K, Rb, Cs and Ln=Pr, Nd, Gd) and KLn3Te8 (Ln=Pr, Nd) to point out structure-properties relations. The ALnTe4 compounds crystallize in the KCeSe4 structure type with Te ions arranged in the form of 4.32.4.3 nets, in which interatomic homonuclear distances indicate an arrangement of isolated dumbbells. This could be verified by the COHP and ELF calculations, both of which revealed isolated [Te2] units. But in contrast to the ionic formulation as A+Ln3+ ([Te2]2−)2, which can be deduced from this observation, the band structure calculations for KPrTe4, KNdTe4, RbNdTe4 and CsNdTe4 reveal metallic conductivity. This behavior was verified for KNdTe4 by resistivity measurements performed by a standard four-probe technique. We explain these results by an incomplete carryover of electrons from the rare earth cation onto tellurium due to covalent bonding leaving parts of the Te-Te ppπ* antibonding states unoccupied. On the other hand the calculations suggest insulating behavior for KGdTe4 resulting from a complete filling of the Te-Te ppπ* antibonding states due to the increased stability of the half filled 4f shell. The ALn3Te8 compounds crystallize in the KNd3Te8 structure type, a distorted addition-defect variant of the NdTe3 type with 44 Te nets. As polyanionic fragments L-shaped [Te3]2− and infinite zig-zag chains 1[Te4]4− are observed (with interatomic homonuclear distances in the range 2.82-3.00 Å), which are separated from each other by distances in the range 3.27-3.49 Å. Again COHP calculations made evident that these latter interactions are secondary. Within the infinite zig-zag chains 1[Te4]4− the Te ions at the corners of the chain have a higher negative charge than the linear coordinated ones in the middle. KPr3Te8 and KNd3Te8 are semiconductors, verified for the latter by resistivity measurements.  相似文献   

14.
The family of hydroxymonophosphates of generic formula AMIII(PO3(OH))2 has been revisited using hydrothermal techniques. Four new phases have been synthesized: CsIn(PO3(OH))2, RbFe(PO3(OH))2, RbGa(PO3(OH))2 and RbAl(PO3(OH))2. Single crystal diffraction studies show that they exhibit two different structural types from previously observed other phases with A=H3O, NH4, Rb and M=Al, V, Fe. The “Cs-In” and “Rb-Fe” phosphates crystallize in the triclinic space group , with the cell parameters a=7.4146(3) Å, b=9.0915(3) Å, c=9.7849(3) Å, α=65.525(3)°, β=70.201(3)°, γ=69.556(3)° and V=547.77(4) Å3 (Z=3) for CsIn(PO3(OH))2 and a=7.2025(4) Å, b=8.8329(8) Å, c=9.4540(8) Å, α=65.149(8)°, β=70.045(6)°, γ=69.591(6)° and V=497.44(8) Å3 (Z=3) for α-RbFe(PO3(OH))2. The “Rb-Al” and “Rb-Ga” phosphates crystallize in the Rc space group, with a=8.0581(18) Å and c=51.081(12) Å (V=2872.5(11) Å3 and Z=18) for RbAl(PO3(OH))2 and a=8.1188(15) Å and c=51.943(4) Å (V=2965(8) Å and Z=18) for RbGa(PO3(OH))2. These two structural types are closely related. Both are built up from MIIIO6 octahedra sharing their apices with PO3(OH) tetrahedra to form [M3(PO3OH)6] units, but the latter exhibits a different configuration of their tetrahedra. The three-dimensional host-lattices result from the connection of the [M3(PO3OH)6] units and they present numerous intersecting tunnels containing the monovalent cations.  相似文献   

15.
Two members of MIII2BP3O12 borophosphates, namely Fe2BP3O12 and In2BP3O12, were synthesized by the solid-state method and characterized by the X-ray single crystal diffraction, the powder diffraction and the electron microscopy. They both crystallize in the hexagonal system, space group P6(3)/m (no. 176) and feature 3D architectures, build up of the M2O9 units and B(PO4)3 groups via sharing the corners; however, they are not isomorphic for the different crystallographically distinct atomic positions. Optical property measurements of both compounds and magnetic susceptibility measurements of Fe2BP3O12 also have been performed. Moreover, in order to gain further insights into the relationship between physical properties and band structure of the MIII2BP3O12 borophosphates, theoretical calculations based on density functional theory (DFT) were performed using the total-energy code CASTEP.  相似文献   

16.
Two new bismuth sulfides KBiSiS4 and KBiGeS4 have been synthesized by means of the reactive flux method. They adopt the RbBiSiS4 structure type and crystallize in space group P21/c of the monoclinic system. The structure consists of (M=Si, Ge) layers separated by bicapped trigonal-prismatically coordinated K atoms. The M atom is tetrahedrally coordinated to four S atoms and the Bi atom is coordinated to a distorted monocapped trigonal prism of seven S atoms. The optical band gap of 2.25(2) eV for KBiSiS4 was deduced from the diffuse reflectance spectrum. From a band structure calculation, the optical absorption for KBiSiS4 originates from the layer. The Si 3p orbitals, Bi 6p orbitals, and S 3p orbitals are highly hybridized near the Fermi level. The orbitals of K have no contributions on both the upper of valence band and the bottom of conduction band.  相似文献   

17.
EuPnSe3 (Pn=Sb, Bi) have been synthesized through the reaction of Eu with Pn2Se3 (Pn=Sb, Bi) and Se at 850-900 °C. These compounds are isotypic with SrPnSe3 (Pn=Sb, Bi) and consist of square pyramidal PnSe5 units and distorted PnSe6 octahedra that form hollow columns that extend along the c-axis. These columns are separated by Eu2+ cations that occur as nine-coordinate tricapped trigonal prisms. There are also additional V-shaped triselenide Se32− anions between the columns that bind the Eu2+ cations. The Se?Se contacts (in EuSbSe3) in these units are 2.4584(11) and 2.4359(11) Å, which are consistent with Se-Se single bonds. The overall structure is chiral. Bond-valence sum calculations indicate that these compounds contain Eu2+. Magnetic susceptibility measurements provide values of 7.66 μB/Eu for EuSbSe3 and 7.64 μB/Eu for EuBiSe3, which are close to the expected free-ion moment for Eu2+. These compounds follow essentially Curie behavior from 300 to 5 K, and undergo an apparently antiferromagnetic transition below 5 K. Crystallographic data: EuSbSe3, orthorhombic, space group P212121, , , , , Z=16, R(F)=2.63% for 183 parameters and 5095 reflections with I>2σ(I); EuBiSe3, orthorhombic, space group P212121, , , , , Z=16, R(F)=2.68% for 183 parameters and 4895 reflections with I>2σ(I).  相似文献   

18.
Two new quaternary strontium selenium(IV) and tellurium(IV) oxychlorides, namely, Sr3(SeO3)(Se2O5)Cl2 and Sr4(Te3O8)Cl4, have been prepared by solid-state reaction. Sr3(SeO3)(Se2O5)Cl2 features a three-dimensional (3D) network structure constructed from strontium(II) interconnected by Cl, SeO32− as well as Se2O52− anions. The structure of Sr4(Te3O8)Cl4 features a 3D network in which the strontium tellurium oxide slabs are interconnected by bridging Cl anions. The diffuse reflectance spectrum measurements and results of the electronic band structure calculations indicate that both compounds are wide band-gap semiconductors.  相似文献   

19.
李小军 《化学通报》2015,78(11):1053-1056
本文选用密度泛函B3LYP方法在Lan L2DZ基组上对Au Gen+(n=2~9)团簇的几何结构和电子性质进行了理论研究,其中包括结构优化、平均键能、HOMO-LUMO能隙和电荷转移等。结果表明,随着锗原子数的不断增加,这些掺杂团簇逐渐形成了三维立体结构,并发现Au Ge7+和Au Ge9+两个掺杂团簇是相对稳定的,而且这些掺杂团簇的电荷转移主要是由金原子到锗原子骨架上。此外,还模拟了这些掺杂团簇的红外光谱,为以后实验研究提供有价值的理论参考。  相似文献   

20.
Ab initio molecular orbital and density functional theory calculations on X2Y3 (X = B, Al,Ga; Y = O,S) indicate a bent structure withC 2v symmetry to be the preferred arrangement for B2 O3, B2 S3 and Al2S3. In contrast, the linear isomer is favoured for Al2 O3 and Ga2 O3. These are in agreement with the experimentally observed structures. The electronegativity difference between X and Y, the MO patterns and the ionic nature of the bonding explain variations in the molecular structure. The results from the two theoretical approaches (MP2/6-31G* and Becke3LYP/6-311 +G* level) are comparable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号