首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structures and magnetic properties of double perovskite-type oxides Eu2LnTaO6 (Ln=Eu, Dy-Lu) were investigated. These compounds adopt a distorted double perovskite structure with space group P21/n. Magnetic susceptibility, specific heat, and 151Eu Mössbauer spectrum measurements show that the Eu2+ ions at the 12-coordinate sites of the perovskite structure are antiferromagnetically ordered at ∼4 K, and that Ln3+ ions at the 6-coordinate site are in the paramagnetic state down to 1.8 K.  相似文献   

2.
The dopant role on the electric and dielectric properties of the perovskite-type CaCu3Ti4O12 (CCTO) compound is evidenced. Impedance spectroscopy measurements show that the relevant permittivity value attributed to sintered CCTO is due to grain boundary (g.b.) effects. The g.b. permittivity value of the pure CCTO can be increased of 1-2 orders of magnitude by cation substitution on Ti site and/or segregation of CuO phase, while the bulk permittivity keeps values 90<εr<180. Bulk and g.b. conductivity contributions are discussed: electrons are responsible for the charge transport and a mean bulk activation energy of 0.07 eV is obtained at room temperature for all the examined samples. The g.b. activation energy ranges between 0.54 and 0.76 eV. Defect models related to the transport properties are proposed, supported by electron paramagnetic resonance measurements.  相似文献   

3.
The relative permittivity (?r) data of 1,1,1-trifluoroethane (HFC-143a), (CAS N# 420-46-2), a hydrofluorocarbon (HFC) developed as a refrigerant that has zero ozone depletion potential, is reported. The relative permittivity of HFC-143a in the liquid phase was measured using a direct capacitance method at temperatures from T = 218 to 294 K and at pressures up to P = 15 MPa, for a frequency of 10 kHz. The uncertainty of the ?r measurements is estimated to be better than ±1.2 × 10−2. A complete set of tables of experimental data as a function of temperature, pressure and density, is presented that covers the dielectric property needs for most engineering applications. To study the dependence of ?r on density and temperature on a molecular basis, the theory developed by Vedam et al. and adapted by Diguet was applied to analyse the data. The Kirkwood modification of the Onsager equation was used to obtain the value of its dipole moment in the liquid phase (μ*). The apparent dipole moment obtained was μ* = 3.293 D. The effective dipole in the liquid state predicted by the Kirkwood–Frölich theory is 2.530 D. The measured values are compared with density functional and density functional self-consistent calculations (SCIPCM) of the electronic distribution and of the dipole moment of HFC-143a. Finally, the values of the isobaric thermal expansion and isothermal compressibility were estimated from the reported measurements.  相似文献   

4.
Changes in structure and dielectric properties at elevated temperatures have been investigated on single-crystals of sodium potassium niobate, Na0.5K0.5NbO3, grown by the flux method. Single-crystal X-ray diffraction studies revealed that the crystals underwent orthorhombic-tetragonal and tetragonal-cubic phase transitions at 465 and 671 K during heating and 446 and 666 K during cooling, respectively. Both transitions were accompanied by volumetric discontinuities of collapse upon heating and expansion upon cooling, suggesting that the transitions were of the first order. The coordination numbers of an Nb showed a decreasing tendency with decreasing temperature, i.e., 6 in cubic, 5+1 in tetragonal and 4+2 in orthorhombic. An Na atom occupied a slightly different position from the K atom in 12-fold coordination, resulting in fewer coordination numbers of 8+4 in cubic and tetragonal and 7+5 in orthorhombic. The spontaneous polarisation (Ps) estimated from the atom positions and formal charges were approximately 0.29 C m−2 in orthorhombic and 0.18 C m−2 in tetragonal. The contribution of the alkaline oxide components to Ps was estimated to be approximately 15% in both ferroelectric forms. The temperature-induced transitions were also confirmed through the dielectric constant and dielectric loss at various frequencies and the differential scanning calorimetry.  相似文献   

5.
A new pillared perovskite compound La5Mo2.76(4)V1.25(4)O16, has been synthesized by solid-state reaction and its crystal structure has been characterized using powder X-ray and neutron diffraction. The magnetic properties of this compound have been investigated using SQUID magnetometry, and the magnetic structure has been studied using neutron diffraction data. A theoretical calculation of relative strengths of spin interactions among different magnetic ions and through different pathways has been performed using extended Hückel, spin dimer analysis. The crystal structure of this material contains perovskite-type layers that are connected through edge-sharing dimeric units of octahedra. The structure is described in space group C2/m with unit cell parameters a=7.931(2) Å, b=7.913(2) Å, c=10.346(5) Å and β=95.096(5)°. The material shows both short-range ferrimagnetic correlations from ∼200 to 110 K and long-range antiferromagnetic order below Tc∼100 K. The magnetic structure was investigated by neutron diffraction and is described by k=(0 0 ) as for other pillared perovskites. It consists of a ferrimagnetic arrangement of Mo and V within the layers that are coupled antiferromagnetically between layers. This is the first magnetic structure determination for any Mo-based pillared perovskite.  相似文献   

6.
A new Pb(II) one-dimensional coordination polymer {[Pb(PAA)2]n (1), PAA = phenylacetate} was synthesized by the reaction of Pb(CH3COO)2 · 3H2O and ligand phenyl acetic acid. Compound 1 was structurally characterized by single-crystal X-ray diffraction. The crystal structure of this compound consists of one-dimensional polymeric units of [Pb(PAA)2] and the coordination number of PbII ions is six. The lead atoms have irregular coordination sphere containing stereo-chemically active lone pair and tetra-hapto (η4) interactions, thus attaining a total hapticity of 10 with environment C4O6Pb. The thermal stability of compound 1 was studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The results of studies of the stoichiometry and formation of complex 1 in methanol, ethanol and acetonitrile solutions were found to be in support of their solid state stoichiometry.  相似文献   

7.
Magnetic properties of double perovskite compounds Ba2HoRuO6 and Ba2HoIrO6 have been reported. Powder X-ray and neutron diffraction measurements show that these compounds have a cubic perovskite-type structure with the space group and the 1:1 ordered arrangement of Ho3+ and Ru5+ (or Ir5+) over the 6-coordinate B sites. Results of the magnetic susceptibility and specific heat measurements show that Ba2HoRuO6 exhibits two magnetic anomalies at 22 and 50 K. Analysis of the temperature dependence of magnetic specific heat indicates that the anomaly at 50 K is due to the antiferromagnetic ordering of Ru5+ ions and that the anomaly at 22 K is ascribable to the magnetic interaction between Ho3+ ions. Neutron diffraction data collected at 10 and 35 K show that the Ba2HoRuO6 has a long range antiferromagnetic ordering involving both Ho3+ and Ru5+ ions. Each of their magnetic moments orders in a Type I arrangement and these magnetic moments are anti-parallel in the ab-plane with each other. The magnetic moments are aligned along the c-direction. On the other hand, Ba2HoIrO6 is paramagnetic down to 1.8 K.  相似文献   

8.
We present here the results of X-ray diffraction (XRD), dielectric and calorimetric studies on lead magnesium tungustate, Pb(Mg0.5W0.5)O3 (PMW) ceramic. It is shown that the low temperature antiferroelectric phase of PMW having orthorhombic structure (space group Pmcn) transforms to paraelectric cubic (space group Fm3m) phase at 281 K. The phase transition is of first order character as confirmed by coexistence of Pmcn and Fm3m phases over wide temperature range ∼50 K. The first order character of phase transition is also revealed by the observation of thermal hysteresis in the real part of dielectric permittivity and calorimetric studies. We do not find any evidence for the additional intermediate phase between antiferroelectric (Pmcn) and paraelectric (Fm3m) phases as reported in the literature. Anomalies in the heat flow and dielectric measurements support the finding of our XRD results and reveals that the phase transition temperature (Tc) is 281 K instead of 312 K reported in the literature.  相似文献   

9.
Microstructural, magnetothermal and dielectric properties of YCrO3 powders prepared by combustion and solid state methods have been studied by a combination of XRD, specific heat, magnetization and permittivity measurements. The TEM and XRD characterization confirm that the combustion powders are amorphous plate-like agglomerates of nano-sized crystalline particles. A more uniform grain size along with an increase of the relative density is observed by SEM in the sintered samples prepared by combustion route with respect to those produced by solid state reaction. Similar to the material obtained through solid state synthesis, the material prepared by the combustion method also shows spin canted antiferromagnetic ordering of Cr+3 (S=3/2) at ∼140 K, which is shown by magnetization as well as λ-type anomaly in the total specific heat. Furthermore, the magnetic contribution to the total specific heat reveals spin fluctuations above TN and a spin reorientation transition at about 60 K. Both YCrO3 compounds show a diffuse phase transition at about 450 K, typical of a relaxor ferroelectric, which is characterized by a broad peak in the real part of the dielectric permittivity as a function of temperature, with the peak decreasing in magnitude and shifting to higher temperature as the frequency increases. The relaxor dipoles are due to the local non-centrosymmetric structure. Furthermore, the high loss tangent in a broad range of temperature as well as conductivity analysis indicates a hopping mechanism for the electronic conductivity as we believe it is a consequence of the outer d3-shell, which have detrimental effects on the polarization and the pooling process in the YCrO3 bulk material. The more uniform particle size and higher density material synthesized through the combustion process leads to an improvement in the dielectric Properties.  相似文献   

10.
A perovskite-type BaCu1/3Nb2/3O3 was prepared by high temperature reaction using BaCO3, CuO and Nb2O5. The X-ray powder diffraction pattern of this compound was indexed with the tetragonal cell with the lattice parameters of a=4.0464(4) and c=4.1807(4) Å (c/a=1.033). This compound had the tetragonal perovskite-type structure in which the B site was occupied statistically by Nb and Cu atoms. From high temperature X-ray powder diffraction patterns this compound had a phase transition from the tetragonal to cubic symmetry in the temperature range of 500-600 °C. The P-E and S-E hysteresis loops occurred at room temperature and the apparent maximum in the temperature dependence of the dielectric constant was observed at 520 °C. The temperature dependence of the inverse of magnetic susceptibility exhibited paramagnetic behavior.  相似文献   

11.
Change of a local environment of a polar pyridinium ion, which is associated with the phase transition of crystalline pyridinium tetrachloroiodate(III) at Tc = 217 K, was investigated by a single crystal X-ray analysis and dielectric and heat capacity measurements. The site symmetry 2/m of the ion at T > Tc indicates an orientational disorder in the high-temperature phase (HTP). The energy difference ΔE between the stable and meta-stable orientations of the pyridinium ion at the 2/m site was estimated to be ΔE/R ? 560 K at 280 K in the HTP. Below the Tc, an antiferroelectric ordering of the ions was revealed.  相似文献   

12.
The thermal diffusivities of near-stoichiometric (U, Ce)O2 solid solutions containing CeO2 up to 22 mol% were investigated in the temperature range of 298-1273 K using the laser flash method. Also, linear thermal expansion measurements were performed in the temperature range of 298-1673 K using a thermomechanical analysis. The thermal conductivities were determined by a calculation of the thermal diffusivity, the density and the specific heat. The thermal conductivities of the tested samples could be expressed as a function of the temperature by the phonon conduction equation k = (A + BT)−1. The thermal conductivity decreased gradually with an increasing Ce content. This was attributable to the increasing lattice defect thermal resistance caused by the U4+, Ce4+ and O2− ions as phonon scattering centers.  相似文献   

13.
Relative permittivity and density on mixing from T = 288.15 K to 328.15 K and atmospheric pressure have been measured over the whole composition range for CH3O(CH2CH2O)mCH3 polyoxyethyleneglycol dimethyl ether with m = 4 (also called 2,5,8,11,14-pentaoxapentadecane or tetraglyme) + (dimethyl or diethyl carbonate). For these systems the deviation of permittivity, Δε, changes sign depending on whether it is defined on the basis of mole fractions of volume fractions. Arguments are put forward that support the choice of the definition in terms of mole fraction. The Redlich-Kister equation has been used to estimate the binary fitting parameters and standard deviations from the regression lines were calculated. The density and excess molar volumes were fitted as a function of temperature and mole fraction to a polynomial equation. The temperature dependence of derived magnitudes, such as the isobaric thermal expansion coefficient, α, , and were computed, due to its importance in the study of specific molecular interactions. Different traditional mixing rules have been applied to predict the permittivity of these mixtures.  相似文献   

14.
Neutron diffractions studies reveal the presence of oxygen disorder in the oxygen deficient perovskites Sr2BSbO5.5 (B=Ca, Sr, Ba). Synchrotron X-ray studies demonstrate that these oxides have a double perovskite-type structure with the cell size increasing as the size of the B cation increases from 8.2114(2) Å for B=Ca to 8.4408(1) Å for B=Ba. It is postulated that a combination of local clustering of the anions and vacancies together with water-water and water-host hydrogen bonds plays a role in defining the volume of the encapsulated water clusters and that changes in the local structure upon heating result in anomalous thermal expansion observed in variable temperature diffraction measurements.  相似文献   

15.
Thermoelectric properties of polycrystalline La1−xSrxCoO3, where Sr2+ is substituted in La3+ site in perovskite-type LaCoO3, have been investigated. Sr-doping increases the electrical conductivity (σ) of La1−xSrxCoO3, and also decreases the Seebeck coefficient (S) for 0.01?x?0.40. A Hall coefficient measurement reveals that the increase in electrical conductivity arises from increases in both carrier concentration and the Hall mobility. The decrease in the Seebeck coefficient is caused by a decrease in carrier effective mass as well as increase in carrier concentration. The highest power factor (σS2) is 3.7×10−4 W m−1 K−2 at 250 K for x=0.10. The thermal conductivity (κ) is about 2 W m−1 K−1 at 300 K for 0?x?0.04, and increases for x?0.05 because of an increase in heat transport by conductive carrier. The thermoelectric properties of La1−xSrxCoO3 are improved by Sr-doping, and the figure of merit (Z=σS2 κ−1) reaches 1.6×10−4 K−1 for x=0.06 at 300 K (ZT=0.048). For heavily Sr-doped samples, the thermoelectric properties diminish mainly because of the decrease in the Seebeck coefficient and the increase in thermal conductivity.  相似文献   

16.
The synthesis, crystal structure, thermal stability and absorbance spectra of perovskite-type oxynitrides with the general formula SrTi1−xNbx(O,N)3 (x=0.05, 0.10, 0.20, 0.50, 0.80, 0.90, 0.95) have been investigated. Oxide samples were prepared by a polymerized complex synthesis route and post-treated under ammonia at 850 °C for 24 h to substitute nitrogen for oxygen. Synchrotron X-ray powder diffraction (XRD) evidenced that the mixed oxide phases were all transformed into oxynitrides with perovskite-type structure during a thermal ammonolysis. SrTi1−xNbx(O,N)3 with compositions x≤0.80 crystallized in a cubic and samples with x≥0.90 in a tetragonal structure. The Rietveld refinement indicated a continuous enlargement of the lattice parameters towards higher niobium content of the samples. Thermogravimetric analysis (TGA) and hotgas extraction revealed the dependence of the nitrogen incorporation upon the degree of niobium substitution. It showed that more nitrogen was detected in the samples with higher niobium content. Furthermore, TGA disclosed stability for all oxynitrides at T≤400 °C. Diffuse reflectance spectroscopy indicated a continuous decrease of the band gap’s width from 3.24 eV (SrTi0.95Nb0.05 (O,N)3) to 1.82 eV (SrTi0.05Nb0.95(O,N)3) caused by the increasing amount of nitrogen towards the latter composition.  相似文献   

17.
The anhydrous salt K2B12F12 crystallized from aqueous solution and its structure was determined by single crystal X-ray diffraction. The Ni2In-type structure it exhibits is rare for an A2X ionic compound at 25 °C and 1 atm., consisting of an expanded hexagonal close-packed array of B12F122− centroids (cent?cent distances: 7.204-8.236 Å) with half of the K+ ions filling all of the Oh holes and half of the K+ ions filling all of the D3h trigonal holes in the close-packed layers that are midway between two “empty” Td holes. The structure is also unusual in that the bond-valence sum for the K+ ions in Oh holes is less than or equal to 0.73 (the bond-valence sum for the other type of K+ ion is 1.16). A variation of the Ni2In structure is exhibited by the previously published monohydrate Cs2(H2O)B12F12, for which an improved structure is also reported here. For K2B12F12: monoclinic, C2/c, a = 8.2072(8), b = 14.2818(7), c = 11.3441(9) Å, β = 92.832(5)°, Z = 4, T = 120(2) K. For Cs2(H2O)B12F12: orthorhombic, P212121, a = 9.7475(4), b = 10.2579(4), c = 15.0549(5) Å, Z = 4, T = 110(1) K.  相似文献   

18.
New phases Sr8ARe3Cu4O24 (A=Sr,Ca) were discovered under high-pressure/high-temperature condition. X-ray powder diffraction and electron diffraction studies for these phases indicated that they have an ordered perovskite-type structure with cubic lattices of ∼8 Å. They showed ferromagnetism at room temperature when they were synthesized under high-oxygen-pressure condition. The Ca-containing phase has a very high Tc of 440 K with a spontaneous magnetization of ∼1 μB/f.u.  相似文献   

19.
New quadruple perovskite oxides Ba4LnIr3O12 (Ln=lanthanides) were prepared and their magnetic properties were investigated. They crystallize in the monoclinic 12L-perovskite-type structure with space group C2/m. The Ir3O12 trimers and LnO6 octahedra are alternately linked by corner-sharing and form the perovskite-type structure with 12 layers. The Ln and Ir ions are both in the tetravalent state for Ln=Ce, Pr, and Tb compounds , and for other compounds (Ln=La, Nd, Sm-Gd, Dy-Lu), Ln ions are in the trivalent state and the mean oxidation state of Ir ions is . An antiferromagnetic transition has been observed for Ln=Ce, Pr, and Tb compounds at 10.5, 35, and 16 K, respectively, while the other compounds are paramagnetic down to 1.8 K.  相似文献   

20.
Bi6.4Pb0.6P2O15.2 is a polymorph of structures with the general stoichiometry Bi6+xM1−xP2O15+y. However, unlike previously published structures that consist of layers formed by edge sharing OBi4 tetrahedra bridged by PO4 and TO6 (T=transition metal) tetrahedra and octahedra the title compound's structure is more complex. It is monoclinic, C2, a=19.4698(4) Å, b=11.3692(3) Å, c=16.3809(5) Å, β=101.167(1)°, Z=10. Single-crystal X-ray diffraction data were refined by least squares on F2 converging to R1=0.0387, wR2=0.0836 for 7023 intensities. The crystal twins by mirror reflection across (001) as the twin plane and twin component 1 equals 0.74(1). Oxygen ions are in tetrahedral coordination to four metal ions and the O(BiPb)4 units share corners to form layers that are part of the three-dimensional framework. Eight oxygen ions form a cube around the two crystallographically independent Pb ions. Pb-O bond lengths vary from 2.265(14) to 2.869(14) Å. Pairs of such cubes share an edge to form a Pb3O20 unit. The two oxygen ions from the unshared edges are part of irregular Bi polyhedra. Other oxygen ions of Bi polyhedra are part only of O(BiPb)4 units, and some oxygen ions of the polyhedra are also part of PO4 tetrahedra. One, two, three and or four PO4 moieties are connected to the Bi polyhedra. Bi-O bond lengths ?3.1 Å vary from 2.090(12) to 3.07(3) Å. The articulations of Pb cubes, Bi polyhedra and PO4 tetrahedra link into the three-dimensional structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号