首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel compound Ba2ZnV2O8 has been synthesized in high temperature solution reaction and its crystal structure has been characterized by means of single crystal X-ray diffraction analysis. It crystallizes in monoclinic system and belongs to space group P21/c with a=7.9050(16), b=16.149(3), , β=90.49(3). It builds up from 1-D branchy chains of [ZnV2O84−], and the Ba2+ cations are located in the space among these chains. The IR spectrum, ultraviolet-visible diffuse reflection integral spectrum and fluorescent spectra of this compound have been investigated. The calculated results of energy band structure by the density functional theory method show that the solid-state compound of Ba2ZnV2O8 is an insulator with direct band gap of 3.48 eV. The calculated total and partial density of states indicate that the top valence bands are contributions from the mixings of O-2p, V-3d, and Zn-3d states and low conduction bands mostly originate from unoccupied antibonding states between the V-3d and O-2p states. The V-O bonds are mostly covalence characters and Zn-O bonds are mostly ionic interactions, and the ionic interaction strength is stronger between the Ba-O than between the Zn-O. The refractive index of nx, ny, and nz is estimated to be 1.7453, 1.7469, and 1.7126, respectively, at wavelength of 1060 nm for Ba2ZnV2O8 crystal.  相似文献   

2.
An alkali metal-rare earth phosphate crystal of NaLa(PO3)4 has been synthesized by high temperature solid-state reactions and structurally characterized by single crystal X-ray diffraction analysis, for the first time. It crystallizes in the monoclinic P21/n space group with lattice parameters: a=7.2655(3), b=13.1952(5), , β=90.382°(1), , Z=4. It is composed of LaO8 polyhedra and [(PO3)4]4− chains sharing oxygen atoms to form a three-dimensional framework, delimiting intersecting tunnels in which the sodium ions are located. The IR spectrum, absorption spectrum, and emission spectrum of the compound have been investigated. The absorption edge is located at 340 nm (3.60 eV). The calculated total and partial densities of states indicate that the top of valence bands is mainly built upon O-2p states which interact with P-3p states via σ (P-O) interactions, and the low conduction bands mostly originates from unoccupied La-5d states. The P-O bond is mostly covalent in character, and the ionic character of the Na-O bond is larger than that in the La-O bond.  相似文献   

3.
A single crystal of the compound Sr3P4O13 has been found and the crystal structure has been characterized by means of single crystal X-ray diffraction analysis. The compound crystallizes in triclinic system and belongs to space group . It builds up from SrO7 polyhedra and P4O13−6 anions and has a layered structure, and the Sr atoms are located in the interlayer space. The absorption and luminescence spectrum of Sr3P4O13 microcrystals have been measured. The calculated results of crystal energy band structure by the DFT show that the solid state of Sr3P4O13 is an isolator with direct band gap. The calculated total and partial density of states indicate that the top valence bands are contributions from P 3p and O 2p states and low conduction bands mostly originate from Sr atomic states. The calculated optical response functions expect that the Sr3P4O13 is a low refractive index, and it is possible that the Sr3P4O13 is used to make transparent material between the UV and FR light zone.  相似文献   

4.
An alkali-metal indium phosphate crystal, K3In3P4O16, has been synthesized by a high-temperature solution reaction and exhibits a new structure in the family of the alkali-metal indium phosphates system. Single-crystal X-ray diffraction analysis shows the structure to be monoclinic with space group P21/n, and the following cell parameters: a=9.7003(18), b=9.8065(18), c=15.855(3) Å, β=90.346(3)°, V=1508.2(5) Å3, Z=4, R=0.0254. It possesses three-dimensional anionic frameworks with tunnels occupied by K+ cations running along the a-axis. The emission and absorption spectra of the compound have been investigated. Additionally, the calculations of energy band structure, density of states, dielectric constants and refractive indexes have been performed with the density functional theory method. Also, the two-photon absorption spectrum is simulated by two-band model. The obtained results tend to support the experimental data.  相似文献   

5.
Na3Cu2O4 and Na8Cu5O10 were prepared via the azide/nitrate route from stoichiometric mixtures of the precursors CuO, NaN3 and NaNO3. Single crystals have been grown by subsequent annealing of the as prepared powders at 500 °C for 2000 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X-ray analysis of the crystal structures (Na3Cu2O4: P21/n, Z=4, a=5.7046(2), b=11.0591(4), c=8.0261(3) Å, β=108.389(1)°, 2516 independent reflections, R1(all)=0.0813, wR2 (all)=0.1223; Na8Cu5O10: Cm, Z=2, a=8.228(1), b=13.929(2), , β=111.718(2)°, 2949 independent reflections, R1(all)=0.0349, wR2 (all)=0.0850), the main feature of both crystal structures are CuO2 chains built up from planar, edge-sharing CuO4 squares. From the analysis of the Cu-O bond lengths, the valence states of either +2 or +3 can be unambiguously assigned to each copper atom. In Na3Cu2O4 these ions alternate in the chains, in Na8Cu5O10 the periodically repeated part consists of five atoms according to CuII-CuII-CuIII-CuII-CuIII. The magnetic susceptibilities show the dominance of antiferromagnetic interactions. At high temperatures the compounds exhibit Curie-Weiss behaviour (Na3Cu2O4: , , Na8Cu5O10: , , magnetic moments per divalent copper ion). Antiferromagmetic ordering is observed to occur in these compounds below 13 K (Na3Cu2O4) and 24 K (Na8Cu5O10).  相似文献   

6.
Bi2Cu5B4O14 crystallizes in the noncentrosymmetric triclinic space group P1 (No. 1) with cell parameters a=10.1381(11) Å, b=9.3917(11) Å, c=3.4566(4) Å, α=105.570(2)°, β=92.275(2)°, γ=107.783(2)°, Z=1 and R1=0.0401 and wR2=0.0980. It is a layered structure that is built up from sheets of rectangular CuO4 and trigonal BO3 groups. The sheets are connected by infinite chains of edge shared BiO6 polyhedra that intersect the bc plane at an angle slightly greater than 90°. The second-harmonic generation efficiency of Bi2Cu5B4O14, using 1064 nm radiation, is about one half times that of KH2PO4.  相似文献   

7.
The new vanadate BiMgVO5 has been prepared and its structure has been determined by single crystal X-ray diffraction: space group P21/n, , , , β=107.38(5)°, wR2=0.0447, R=0.0255. The structure consists of [Mg2O10] and [Bi2O10] dimers sharing their corners with [VO4] tetrahedra. The ranges of bond lengths are 2.129-2.814 Å for Bi-O; 2.035-2.167 Å for Mg-O and 1.684-1.745 Å for V-O. V-O bond lengths determined from Raman band wavenumbers are between 1.679 and 1.747 Å. An emission band overlapping the entire visible region with a maximum around 650 nm is observed.  相似文献   

8.
The crystal structure of monoclinic YP5O14 (space group C2/c, a=12.919(2) Å, b=12.796(4) Å, c=12.457(2) Å, β=91.30(1)°, Z=8) has been refined from single-crystal X-ray diffraction data. Full-matrix least-squares refinement on F2 using 2249 independent reflections for 183 refinable parameters results in a final R value of 0.027 (ωR=0.069). The structure is isotypic with HoP5O14. This structure is built up from infinite layers of PO4 tetrahedra linked through isolated YO8 polyhedra. The three-dimensional cohesion of the framework results from Y-O-P bridges. This crystal structure refinement leads to the calculated X-ray diffraction powder pattern of this monoclinic polymorph, which has been the starting point of a thorough study of the solid-state synthesis of this ultraphosphate. This investigation further leads to a better outstanding of features observed during the synthesis of powdered samples. The thermal behavior of this ultraphosphate has been studied by DTA and TGA analyses. The infrared and Raman spectroscopic characterizations have been carried out on polycrystalline samples. The luminescence properties of the Eu3+ ion incorporated in the monoclinic C2/c polymorph of YP5O14 as local structural probe show that in YP5O14: 5% Eu3+ sample, the Eu3+ ions are distributed over the two Y3+ crystallographic sites of C2 symmetry of this structure.  相似文献   

9.
A new quaternary lanthanide alkaline-earth tellurium(IV) oxide, La2Ba(Te3O8)(TeO3)2, has been prepared by the solid-state reaction and structurally characterized. The compound crystallizes in monoclinic space group C2/c with a=19.119(3), b=5.9923(5), c=13.2970(19) Å, β=107.646(8)°, V=1451.7(3) Å3 and Z=4. La2Ba(Te3O8)(TeO3)2 features a 3D network structure in which the cationic [La2Ba(TeO3)2]4+ layers are cross-linked by Te3O84− anions. Both band structure calculation by the DFT method and optical diffuse reflectance spectrum measurements indicate that La2Ba(Te3O8)(TeO3)2 is a wide band-gap semiconductor.  相似文献   

10.
Na6Co2O6 was synthesized via the azide/nitrate route by reaction between NaN3, NaNO3 and Co3O4. Stoichiometric mixtures of the starting materials were heated in a special regime up to 500°C and annealed at this temperature for 50 h in silver crucibles. Single crystals have been grown by subsequent annealing of the reaction product at 500°C for 500 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X-ray analysis of the crystal structure (, Z=1, a=5.7345(3), b=5.8903(3), c=6.3503(3) Å, α=64.538(2), β=89.279(2), γ=85.233(2)°, 1006 independent reflections, R1=8.34% (all data)), cobalt is tetrahedrally coordinated by oxygen. Each two CoO4 tetrahedra are linked through a common edge forming Co2O66- anions. Cobalt ions within the dimers, being in a high spin state (S=2), are ferromagnetically coupled (J=17 cm-1). An intercluster spin exchange (zJ′=−4.8 cm-1) plays a significant role below 150 K and leads to an antiferromagnetically ordered state below 30 K. Heat capacity exhibits a λ-type anomaly at this temperature and yields a value of 19.5 J/mol K for the transition entropy, which is in good agreement with the theoretical value calculated for the ordering of the ferromagnetic-coupled dimers. In order to construct a model for the spin interactions in Na6Co2O6, the magnetic properties of Na5CoO4 have been measured. This compound features isolated CoO4 tetrahedra and shows a Curie-Weiss behavior (μ=5.14 μB, Θ=−20 K) down to 15 K. An antiferromagmetic ordering is observed in this compound below 10 K.  相似文献   

11.
NaPd3O4, Na2PdO3 and K3Pd2O4 have been prepared by solid-state reaction of Na2O2 or KO2 and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd3O4 (space group Pmn, a=5.64979(6) Å, Z=2) is isostructural to NaPt3O4. It consists of NaO8 cubes and PdO4 squares, corner linked into a three-dimensional framework where the planes of neighboring PdO4 squares are perpendicular to each other. Na2PdO3 (space group C2/c, a=5.3857(1) Å, b=9.3297(1) Å, c=10.8136(2) Å, β=99.437(2)°, Z=8) belongs to the Li2RuO3-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na+ and Pd4+ cations alternate with Na3 layers along the c-axis. Na2PdO3 exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K3Pd2O4, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) Å, b=9.1772(12) Å, c=11.3402(12) Å, Z=4). Its structure is composed of planar PdO4 units connected via common edges to form parallel staggered PdO2 strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K3Pd2O4 reveal a Curie-Weiss behavior in the temperature range above 80 K.  相似文献   

12.
A novel sodium lead pentaborate, NaPbB5O9, has been successfully synthesized by standard solid-state reaction. The single-crystal X-ray structural analysis showed that NaPbB5O9 crystallizes in the monoclinic space group P21/c with a=6.5324(10) Å, b=13.0234(2) Å, c=8.5838(10) Å, β=104.971(10)°, and Z=4. The crystal structure is composed of double ring [B5O9]3− units, [PbO7] and [NaO7] polyhedra. [B5O9]3− groups connect with each other forming two-dimensional infinite [B5O9]3− layers, while [PbO7] and [NaO7] polyhedra are located between the layers. [PbO7] polyhedra linked together via corner-sharing O atom forming novel infinite [PbO6] chains along the c axis. The thermal behavior, IR spectrum and the optical diffuse reflectance spectrum of NaPbB5O9 were reported.  相似文献   

13.
Two new quaternary strontium selenium(IV) and tellurium(IV) oxychlorides, namely, Sr3(SeO3)(Se2O5)Cl2 and Sr4(Te3O8)Cl4, have been prepared by solid-state reaction. Sr3(SeO3)(Se2O5)Cl2 features a three-dimensional (3D) network structure constructed from strontium(II) interconnected by Cl, SeO32− as well as Se2O52− anions. The structure of Sr4(Te3O8)Cl4 features a 3D network in which the strontium tellurium oxide slabs are interconnected by bridging Cl anions. The diffuse reflectance spectrum measurements and results of the electronic band structure calculations indicate that both compounds are wide band-gap semiconductors.  相似文献   

14.
The new compounds Ce2/3−xRh2O4 (x∼0.11-0.14) and CeRh2O5 have been prepared. Their structures were determined from single crystal X-ray diffraction data. Electrical and magnetic properties were also evaluated. Based on the structural analysis and physical properties, oxidation states for CeRh2O5 can be assigned as Ce4+Rh3+2O5. A small variation in x was detected for Ce2/3−xRh2O4 indicating a formula ranging from Ce3.64+0.55Rh3+2O4 to Ce3.81+0.525Rh3+2O4.  相似文献   

15.
Karrooite, MgTi2O5, is a promising ceramic pigment due to its high refractoriness and refractive indices, as well as its ability to host transition metal ions in two crystallographically distinct octahedral sites. The colouring performance was investigated combining X-ray powder diffraction with UV-vis-NIR spectroscopy on karrooite doped with V, Cr, Mn, Fe, Co or Ni (M) according to the formula Mg1−xTi2−xM2xO5, with x=0.02 and 0.05. Transition metals solubility in the karrooite lattice is not complete and a second phase is always present (geikielite or rutile). Structural data proved that incorporation of different chromophore ions into the karrooite structure affects unit cell parameters, bond length distances and angles, site occupancies and therefore cation order-disorder. Optical spectra exhibit broad absorbance bands of Co(II), Cr(IV), Fe(III), Mn(II), Mn(III), Ni(II), V(IV) with distinct contributions by cations in the M1 and M2 sites. Karrooite pigments have colours ranging from orange to brown-tan (Cr, Fe, Mn, V) to green (Co) and yellow (Ni) that are stable in low-temperature (<1050 °C) ceramic glazes and glassy coatings.  相似文献   

16.
Two new anhydrous sodium borophosphates with one-dimensional structure, Na3B6PO13(1) and Na3BP2O8(2), were synthesized by low-temperature molten salts techniques using boric acid and sodium dihydrogen phosphate as flux, respectively. The crystal structures were solved by means of single-crystal X-ray diffraction (1, orthorhombic, Pnma (no. 62), , , , Z=4; 2 , monoclinic, C2/c (no. 15), , , , β=92.492(5)°, Z=8). Compound 1 is characterized by an infinite chain of containing eight-membered rings in which all vertexes of borate groups contribute to interconnection. Compound 2 reveals an infinite straight chain built of vertex-sharing four-membered rings, and chains in neighboring layers arranged along different orientations. The relations between structures and the synthetic conditions with only traced water are discussed.  相似文献   

17.
A new indium terbium germanate InTbGe2O7, which is a member of the thortveitite family, was prepared as a polycrystalline powder material by high-temperature solid-state reaction. This new compound crystallizes in the monoclinic system, space group C2/c (No. 15), with unit cell parameters a=6.8818(2) Å, b=8.8774(3) Å, c=9.7892(4) Å, β=101.401(1)°, V=586.25(4) Å3 and Z=4. Its structure was characterized by Rietveld refinement of powder laboratory X-ray diffraction data. It consists of octahedral sheets that are held together by sheets of isolated Ge2O7 diorthogroups composed of two tetrahedra sharing a common vertex. It contains only one octahedral site occupied by In3+ and Tb+3 cations. The characteristic mirror plane in the thortveitite (Sc2Si2O7) space group (C2/m, No. 12) is not present in this new compound. Besides, in InTbGe2O7, the Ge–O–Ge angle bridging two diorthogroups is 156.8(2)° as compared to the one in thortveitite, which is 180°. On the other hand, luminescent properties were observed when it is excited with 376.5 nm wavelength. The luminescence spectrum shows typical transitions from the 5D4 multiplet belonging to the trivalent terbium ion.  相似文献   

18.
A new hexagonal perovskite-type oxide Ba8Ta4Ru8/3Co2/3O24 was synthesized by the solid-state method at 1573 K and characterized by electron diffraction (ED), time-of-flight (TOF) neutron powder diffraction, and magnetic susceptibility. Structure parameters of Ba8Ta4Ru8/3Co2/3O24 were refined by the Rietveld method from the TOF neutron powder diffraction data on the basis of space group P63/mcm and lattice parameters a=10.0075(1) Å and c=18.9248(2) Å as obtained from the ED data (Z=3). The crystal structure of Ba8Ta4Ru8/3Co2/3O24 consists of 8-layered (cchc)2 close-packed stacking of BaO3 layers along the c-axis. Corner-shared octahedra are filled by Ta only and face-shared octahedra are statistically occupied by Ru, Co, and vacancies. Similar compounds Ba8Ta4Ru8/3M2/3O24 with M=Ni and Zn were also prepared. Magnetic susceptibility measurements showed no magnetic ordering down to 5 K.  相似文献   

19.
The new compound Co3Te2O2(PO4)2(OH)4 was synthesized using hydrothermal techniques. It crystallizes in the monoclinic space group C2/m with the unit cell a=19.4317(10) Å, b=6.0249(3) Å, c=4.7788(2) Å, β=103.139(5)°. The crystal structure is an open framework having chains of edge sharing [Co(1)O6] octahedra. Other building blocks are [TeO3(OH)2], [PO4] and [Co(2)O2(OH)4] connected mainly via corner sharing. The –OH groups protrude into channels in the structure. The magnetic susceptibility measured from 2 to 300 K shows two broad anomalies at around 21 K and 4 K, respectively. The peak at ∼20 K is ascribed to a two-dimensional antiferromagnetic ordering of linear [Co(1)O6] chains coupled by interchain interaction via [PO4] groups in the Co(1) sheets. The second transition at 4 K is ascribed to a second antiferromagnetic ordering of the moments of the Co(2) entities via super–super exchange involving [PO4] and [TeO3(OH)2] groups. This assignment is strongly supported by low-temperature heat capacity measurements indicating an entropy removal within the high-temperature transition of about twice the magnitude of the low-temperature transition.  相似文献   

20.
A nest-shaped cluster [(C4H9)4N]2[WOSe3Cu3Br1.67Cl1.33] (1) and a cage-shaped cluster [(C4H9)4N]3[WSe4Cu3Br2Cl2] (2) were synthesized and their structures were determined by single-crystal X-ray diffraction. It was found that cluster 1 showed better optical limiting properties under an 8 ns pulsed laser at 532 nm but poorer optical limiting properties under a 35 ps pulsed laser compared with its analogue [(C4H9)4N]2[MoOS3Cu3BrCl2]. The influence of the peripheral ligands of the cluster to the optical limiting properties was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号