首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the wave equation with variable coefficients subject to Neumann and Robin boundary conditions, two mutually dual problems are considered: the Dirichlet observation problem with weak generalized solutions and the control problem with strong generalized solutions. Both problems are approximated by finite differences preserving the duality relation. The convergence of the approximate solutions is established in the norms of the corresponding dual spaces.  相似文献   

2.
For the wave equation with variable coefficients and homogeneous boundary conditions of the first kind, we consider problems with regular zone controls and dual zone observation problems. For weak generalized solutions of the observation problem on sufficiently large time intervals, we obtain constructive estimates that imply the well-posed solvability of the observation operator. These estimates contain information that permits one to construct stable approximate solutions of both problems with the use of a variational method suggested earlier by the author for linear equations with nonuniformly perturbed operators.  相似文献   

3.
《Optimization》2012,61(3):353-374
In the present paper some barrier and penalty methods (e.g. logarithmic barriers, SUMT, exponential penalties), which define a continuously differentiable primal and dual path, applied to linearly constrained convex problems are studied, in particular, the radius of convergence of Newton’s method depending on the barrier and penalty para-meter is estimated, Unlike using self-concordance properties the convergence bounds are derived by direct estimations of the solutions of the Newton equations. The obtained results establish parameter selection rules which guarantee the overall convergence of the considered barrier and penalty techniques with only a finite number of Newton steps at each parameter level. Moreover, the obtained estimates support scaling method which uses approximate dual multipliers as available in barrier and penalty methods  相似文献   

4.
This paper studies an inventory routing problem (IRP) with split delivery and vehicle fleet size constraint. Due to the complexity of the IRP, it is very difficult to develop an exact algorithm that can solve large scale problems in a reasonable computation time. As an alternative, an approximate approach that can quickly and near-optimally solve the problem is developed based on an approximate model of the problem and Lagrangian relaxation. In the approach, the model is solved by using a Lagrangian relaxation method in which the relaxed problem is decomposed into an inventory problem and a routing problem that are solved by a linear programming algorithm and a minimum cost flow algorithm, respectively, and the dual problem is solved by using the surrogate subgradient method. The solution of the model obtained by the Lagrangian relaxation method is used to construct a near-optimal solution of the IRP by solving a series of assignment problems. Numerical experiments show that the proposed hybrid approach can find a high quality near-optimal solution for the IRP with up to 200 customers in a reasonable computation time.  相似文献   

5.
For the wave equation with variable coefficients and boundary conditions of the first kind, we consider mutually dual problems with irregular zonal controls and regular zonal observations. Constructive estimates of well-posed solvability are obtained for the observation problem with strong generalized solutions on sufficiently large time intervals. These estimates contain information necessary for the construction of stable approximations to solutions of both problems with the use of the earlier suggested variational method.  相似文献   

6.
Dual variational problem for use with the problem of minimization of the boundary functionals of three-dimensional theory of elasticity, is formulated using the method of orthogonal expansions at the boundary of the region constructed in /1/. Solutions of the initial and the dual problem obtained yield the estimates for the error of the approximate solutions of the boundary value problems of the theory of elasticity.  相似文献   

7.
The classical method of fundamental solutions (MFS) has only been used to approximate the solution of homogeneous PDE problems. Coupled with other numerical schemes such as domain integration, dual reciprocity method (with polynomial or radial basis functions interpolation), the MFS can be extended to solve the nonhomogeneous problems. This paper presents an extension of the MFS for the direct approximation of Poisson and nonhomogeneous Helmholtz problems. This can be done by using the fundamental solutions of the associated eigenvalue equations as a basis to approximate the nonhomogeneous term. The particular solution of the PDE can then be evaluated. An advantage of this mesh-free method is that the resolution of both homogeneous and nonhomogeneous equations can be combined in a unified way and it can be used for multiscale problems. Numerical simulations are presented and show the quality of the approximations for several test examples. AMS subject classification 35J25, 65N38, 65R20, 74J20  相似文献   

8.
In this paper we present a new approach to solve a two-level optimization problem arising from an approximation by means of the finite element method of optimal control problems governed by unilateral boundary-value problems. The problem considered is to find a minimum of a functional with respect to the control variablesu. The minimized functional depends on control variables and state variablesx. The latter are the optimal solution of an auxiliary quadratic programming problem, whose parameters depend onu.Our main idea is to replace this QP problem by its dual and then apply the barrier penalty method to this dual QP problem or to the primal one if it is in an appropriate form. As a result we obtain a problem approximating the original one. Its good property is the differentiable dependence of state variables with respect to the control variables. Furthermore, we propose a method for finding an approximate solution of a penalized lower-level problem if the optimal solution of the original QP problem is known. We apply the result obtained to some optimal shape design problems governed by the Dirichlet-Signorini boundary-value problem.This research was supported by the Academy of Finland and the Systems Research Institute of the Polish Academy of Sciences.  相似文献   

9.
Dirichlet boundary value problems are studied for thin elastic plates on an elastic foundation within Kirchhoff's classical model. The aim is to construct dual problems that make it possible to obtain bilateral error estimates for approximate solutions. In the absence of an elastic foundation, the dual functionals are maximized on function sets whose elements satisfy certain differential restrictions. The theory is illustrated by means of a numerical example.  相似文献   

10.
This paper proposes two methods to solve posynomial geometric programs with negative degrees of difficulty of lower integral values. Such a case arises when a primal program has a number of variables equal or slightly greater than the number of terms. In this specific case the normality and the orthogonality conditions of the dual geometric program give a system of linear equations, where the number of linear equations is greater than the number of dual variables. No general solution vector exists for this system of linear equations. Either the least square or linear programming method can be applied to get an approximate solution vector for this system. Then the optimum value of the dual objective function can be obtained from the approximate solution vector.  相似文献   

11.
The rate of convergence of approximate solutions via penalization for free boundary problems are concerned. A key observation is to obtain global bounds of penalized terms which give necessary estimates on integrations by the nonlinear adjoint method by L.C. Evans.  相似文献   

12.
The Hopfield neural network (HNN) is one major neural network (NN) for solving optimization or mathematical programming (MP) problems. The major advantage of HNN is in its structure can be realized on an electronic circuit, possibly on a VLSI (very large-scale integration) circuit, for an on-line solver with a parallel-distributed process. The structure of HNN utilizes three common methods, penalty functions, Lagrange multipliers, and primal and dual methods to construct an energy function. When the function reaches a steady state, an approximate solution of the problem is obtained. Under the classes of these methods, we further organize HNNs by three types of MP problems: linear, non-linear, and mixed-integer. The essentials of each method are also discussed in details. Some remarks for utilizing HNN and difficulties are then addressed for the benefit of successive investigations. Finally, conclusions are drawn and directions for future study are provided.  相似文献   

13.
In this paper, we consider parametric primal and dual equilibrium problems in locally convex Hausdorff topological vector spaces. Sufficient conditions for the approximate solution maps to be Hausdorff continuous are established. We provide many examples to illustrate the essentialness of the imposed assumptions. As applications of these results, the Hausdorff continuity of the approximate solution maps for optimization problems, variational inequalities and fixed-point problems are derived.  相似文献   

14.
A novel nonlinear Lagrangian is presented for constrained optimization problems with both inequality and equality constraints, which is nonlinear with respect to both functions in problem and Lagrange multipliers. The nonlinear Lagrangian inherits the smoothness of the objective and constraint functions and has positive properties. The algorithm on the nonlinear Lagrangian is demonstrated to possess local and linear convergence when the penalty parameter is less than a threshold (the penalty parameter in the penalty method has to approximate zero) under a set of suitable conditions, and be super-linearly convergent when the penalty parameter is decreased following Lagrange multiplier update. Furthermore, the dual problem based on the nonlinear Lagrangian is discussed and some important properties are proposed, which fail to hold for the dual problem based on the classical Lagrangian. At last, the preliminary and comparing numerical results for several typical test problems by using the new nonlinear Lagrangian algorithm and the other two related nonlinear Lagrangian algorithms, are reported, which show that the given nonlinear Lagrangian is promising.  相似文献   

15.
A primal-dual version of the proximal point algorithm is developed for linearly constrained convex programming problems. The algorithm is an iterative method to find a saddle point of the Lagrangian of the problem. At each iteration of the algorithm, we compute an approximate saddle point of the Lagrangian function augmented by quadratic proximal terms of both primal and dual variables. Specifically, we first minimize the function with respect to the primal variables and then approximately maximize the resulting function of the dual variables. The merit of this approach exists in the fact that the latter function is differentiable and the maximization of this function is subject to no constraints. We discuss convergence properties of the algorithm and report some numerical results for network flow problems with separable quadratic costs.  相似文献   

16.
We use sextic spline function to develop numerical method for the solution of system of second-order boundary-value problems associated with obstacle, unilateral, and contact problems. We show that the approximate solutions obtained by the present method are better than those produced by other collocation, finite difference and spline methods. A numerical example is given to illustrate practical usefulness of our method.  相似文献   

17.
For the wave equation with variable coefficients, problems with one-side boundary controls of three basic types and a boundary condition of the third kind at the uncontrolled end are considered. For dual problems with one-side boundary observations in the classes of strong generalized solutions, new constructive observability inequalities are obtained that are superior to the earlier known ones in two respects. First, inequalities with an optimal value of the controllability-observability threshold are derived, and second, the value of the final evaluation constant is bounded away from zero on time intervals whose length is close to the critical length. This opens up a possibility of constructing stable approximate solutions to the indicated classes of dual control and observation problems on time intervals not only of an arbitrary supercritical but also of precisely critical length.  相似文献   

18.
《Optimization》2012,61(6):821-832
In this article, various types of approximate solutions for vector quasi-variational problems in Banach spaces are introduced. Motivated by [M.B. Lignola, J. Morgan, On convergence results for weak efficiency in vector optimization problems with equilibrium constraints, J. Optim. Theor. Appl. 133 (2007), pp. 117–121] and in line with the results obtained in optimization, game theory and scalar variational inequalities, our aim is to investigate lower convergence properties (in the sense of Painlevé–Kuratowski) for such approximate solution sets in the presence of perturbations on the data. Sufficient conditions are obtained for the lower convergence of ‘strict approximate’ solution sets but counterexamples show that, in general, the other types of solutions do not lower converge. Moreover, we prove that any exact solution to the limit problem can be obtained as the limit of a sequence of approximate solutions to the perturbed problems.  相似文献   

19.
Mathematical programming (MP) problems depending on a small parameter are investigated. Attention is paid to the cases where the solutions to the reduced program and/or the solutions to the dual reduced program are not unique. Conditions are given for the convergence of perturbed solutions to a point of the reduced problem solution set, if the small parameter tends to zero. It is shown how to find this point and how to construct an approximate solution to the perturbed program. A singular situation may appear if the dual solution set is unbounded. In this case, a gap between perturbed and reduced solutions may arise. However, it is shown that the perturbed solutions are close to the solutions of some modified reduced problem. The practical usefulness of perturbation theory is demonstrated by considering the two LP problems. Decomposition and aggregation procedures are constructed on the base of general results to find suboptimal solutions of these problems.  相似文献   

20.
Summary The present paper is concerned with finding an effective polynomial solution to a class of dual integral equations which arise in many mixed boundary value problems in the theory of elasticity. The dual integral equations are first transformed into a Fredholm integration equation of the second kind via an auxiliary function, which is next reduced to an infinite system of linear algebraic equations by representing the unknown auxiliary function in the form of an infinite series of Jacobi polynomials. The approximate solution of this infinite system of equations can be obtained by a suitable truncation. It is shown that the unknown function involving the dual integral equations can also be expressed in the form of an infinite series of Jacobi polynomials with the same expansion coefficients with no numerical integration involved. The main advantage of the present approach is that the solution of the dual integral equations thus obtained is numerically more stable than that obtained by reducing themdirectly into an infinite system of equations, insofar as the expansion coefficients are determined essentially by solving asecond kind integral equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号