首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
苏雪梅  卓仲畅  王立军  高锦岳 《中国物理》2002,11(11):1175-1178
We have investigated the dispersive properties of tunnelling-induced transparency in asymmetric double quantum well structures where two excited states are coupled by resonant tunnelling through a thin barrier in a three-level system of electronic subbands. The intersubband transitions exhibit high dispersion at zero absorption, which leads to the slow light velocity in this medium as compared with that in vacuum (c=3×108). The group velocity in a specific GaAs/AlGaAs sample is calculated to be vg=c/4.30. This structure can be used to compensate for the dispersion and energy loss in fibre optical communications.  相似文献   

2.
赵凤岐  咏梅 《中国物理 B》2012,21(10):107103-107103
The cyclotron mass of magnetopolarons in wurtzite In x Ga 1 x N/GaN quantum well is studied in the presence of an external magnetic field by using the Larsen perturbation method.The effects of the built-in electric field and different phonon modes including interface,confined and half-space phonon modes are considered in our calculation.The results for a zinc-blende quantum well are also given for comparison.It is found that the main contribution to the transition energy comes from half-space and interface phonon modes when the well width is very small while the confined modes play a more important role in a wider well due to the location of the electron wave function.As the well width increases,the cyclotron mass of magnetopolarons first increases to a maximum and then decreases either with or without the built-in electric field in the wurtzite structure and the built-in electric field slightly reduces the cyclotron mass.The variation of cyclotron mass in a zinc-blende structure is similar to that in a wurtzite structure.With the increase of external magnetic field,the cyclotron mass of polarons almost linearly increases.The cyclotron frequency of magnetopolarons is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号