首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the use of LES for a flow around a three-dimensional axisymmetric hill. Two aspects of this simulation in particular are discussed here, the resolution and the inlet boundary conditions. In contrast to the LES of flows with sharp edge separations which do not require the near-wall dynamics to be fully resolved, the hill flow LES relies on the resolution of the upstream boundary layer in order to provoke the separation at a correct position. Although around 15 ×106 computational cells were used, the resolution of streaky structures in the near-wall region that are important for a LES is not achieved. Two different inlet boundary conditions were used: the steady experimental profile and the time-dependent boundary conditions produced from DNS results of low Reynolds number channel flow. No significant improvement in the results was obtained with the unsteady inlet condition. This indicates that, although the unsteady inlet boundary conditions may be necessary for a successful LES of this flow, they must be followed with the resolution of the boundary layer for a successful LES.  相似文献   

2.
In many practical applications, the flow state (laminar, transitional, turbulent) might vary in space and/or in time for a given configuration. The aim of the current study is to show that the spectral entropy Sd, obtained from solving the eigenvalue problem for the temporal autocorrelation function, can be used in order to uniquely quantify the flow state and differentiate between laminar, transitional, or turbulent regimes; as such, it delivers a direct measure of turbulence level. Therefore, this quantity might support hybrid numerical simulations by determining the local flow state, identifying in this way the most suitable computational model and switching, e.g., from RANS to LES. The first test of the suggested approach relies on Direct Numerical Simulations (DNS) for decaying Homogeneous Isotropic Turbulence (HIT) performed for ten different Taylor Reynolds numbers. Results obtained by analyzing DNS indicate that Sd is an excellent candidate to quantify turbulence level and transition. To check the robustness of the corresponding analysis, the impact of different resolutions has been investigated, revealing that a correct state estimate is still obtained with a coarser spatial or temporal resolution. Finally, to check the generality of the approach, the entropy thresholds obtained from the DNS analysis have been used with the same algorithm to analyze 1) DNS results obtained for the Taylor-Green vortex benchmark at Re=1600 as well as 2) results obtained through Large Eddy Simulations in a blood nozzle, revealing in both cases a perfect agreement with a traditional, user-based analysis of the flow conditions. Hence, Sd appears to be an excellent quantitative indicator of laminar, transitional, or turbulent flow, allowing an automatic, user-independent analysis of the flow state for a variety of conditions. In principle, it could be used without modification to analyze experimental measurements as well.  相似文献   

3.
This paper first presents the turbulent heat transfer phenomenon of the boundary layer over a 2-dimensional hill using the direct numerical simulation (DNS). DNS results reveal turbulent heat transfer phenomena in the boundary layer over a 2-dimensional hill affected by the flow acceleration and the concave wall at the foreface of a hill, the convex wall at the top of the hill, and the flow deceleration, separation, and reattachment and the concave wall at the back of the hill. The prediction of turbulent heat transfer, the turbulence models of LES and HLR should be assessed in such heat transfer because these models have seldom been evaluated in the complex turbulent heat transfer. Therefore, this paper also presents evaluations of predictions of LES and HLR in the complicated turbulent heat transfer which is the boundary layer with heat transfer over a 2-dimensional hill. Consequently, this paper obviously shows the detailed turbulent heat transfer phenomena of a boundary layer over a 2-dimensional hill via DNS, and the evaluation results of prediction accuracy of LES and HLR for the heat transfer. LES and HLR give good prediction in comparison with DNS results, but the predicted reattachment and separation points are slightly different from DNS.  相似文献   

4.
The explicit dependence of LES fields on the turbulence resolution scale Δ implies that LES statistics usually vary with Δ and exhibit different convergence behaviors for different types of statistics, flow variables and subgrid LES models. The present work compares the performance of two popular subgrid models—the dynamic Smagorinsky model and the Vreman model—based on the convergence of their LES statistics with respect to Δ for a piloted methane-air (Sandia D) flame. The Δ-dependence of the LES statistics is studied based on five grids with progressively increased resolution ranging from 3 × 105 to about 10.4 × 106 cells. The simulation results show that the resolved velocity statistics converge for the finest grids with some weak Δ-dependence observed in the variance fields. The mixture fraction statistics are found to be more sensitive to the turbulence resolution scale upstream in the flame signifying the importance of the estimation of the Δ-invariant LES statistics at the DNS limit. For the considered flame the Vreman subgrid model exhibits good performance with the statistics being very close to those given by the dynamic Smagorinsky model, and being rather insensitive to a choice of the model constant.  相似文献   

5.
In this paper, a three-dimensional filter-matrix lattice Boltzmann (FMLB) model based on large eddy simulation (LES) was verified for simulating wall-bounded turbulent flows. The Vreman subgrid-scale model was employed in the present FMLB–LES framework, which had been proved to be capable of predicting turbulent near-wall region accurately. The fully developed turbulent channel flows were performed at a friction Reynolds number Reτ of 180. The turbulence statistics computed from the present FMLB–LES simulations, including mean stream velocity profile, Reynolds stress profile and root-mean-square velocity fluctuations greed well with the LES results of multiple-relaxation-time (MRT) LB model, and some discrepancies in comparison with those direct numerical simulation (DNS) data of Kim et al. was also observed due to the relatively low grid resolution. Moreover, to investigate the influence of grid resolution on the present LES simulation, a DNS simulation on a finer gird was also implemented by present FMLB–D3Q19 model. Comparisons of detailed computed various turbulence statistics with available benchmark data of DNS showed quite well agreement.  相似文献   

6.
This paper presents results of a large eddy simulation (LES) combined with Lagrangian particle tracking and a point-force approximation for the feedback effect of particles on the downward turbulent gaseous flow in a vertical channel. The LES predictions are compared with the results obtained by direct numerical simulation (DNS) of a finer computational mesh. A parametric study is conducted for particles with two response times in simulations with and without streamwise gravitational settling and elastic, binary interparticle collisions. It is shown that the classical and the dynamic Smagorinsky turbulence models adequately predict the particle-induced changes in the mean streamwise velocity and the Reynolds stresses of the carrier phase for the range of parameters studied. However, the largest discrepancies between the LES and DNS results are found in the cases of particle-laden flows. Conditional sampling of the instantaneous resolved flow fields indicates that the mechanisms by which particles directly oppose the production of momentum and vorticity of the organized fluid motions are also observed in the LES results. However, the geometric features of the near-wall quasistreamwise vortices are overestimated by the use of both turbulence models compared to the DNS predictions.  相似文献   

7.
A large-eddy simulation (LES) of a transitional separated flow over a plate with a semi-circular leading at low (<0.2%) and high (5.6%) free-stream turbulence (FST) has been performed, using a co-located grid with the Rhie–Chow pressure smoothing. A numerical trip is used to produce a high FST level and a dynamic subgrid-scale model is also employed in the current study. The entire transition process leading to breakdown to turbulence has been shown clearly by the flow visualisations using instantaneous spanwise vorticities, and the differences between the low- and high-FST cases are clearly visible. Coherent structures are also visualised using isosurfaces of the Q-criterion, and for the high-FST case, the spanwise-oriented quasi-two-dimensional rolls, which are clearly present in the low-FST case, are not visible anymore. Detailed quantitative comparisons between the present LES results and experimental data and the previous LES results at low FST using a staggered grid have been done and a good agreement has been obtained, indicating that the current LES using a co-located grid with pressure smoothing can also predict transitional flows accurately.  相似文献   

8.
The paper presents some results of application of a low-Re-number second-moment closure (SMC) to modelling the laminar-to-turbulent transition induced by a separation bubble. The same model, tested earlier in a number of low and high-Re-number flows, was found also to reproduce reasonably well several cases of bypass transition, as well as cyclic sequence of laminarization and turbulence revival in oscillating flows at transitional Re numbers, without any artificial transition triggering. The focus of the paper is on separation-induced transition in flow over a flat plate with a circular leading edge, and on a plane surface on which a laminar separation bubble was generated by imposed suction on the wall-opposite boundary. The results show acceptable agreement with available experimental data, large-eddy and direct numerical simulations (LES, DNS). The importance of applying higher-order discretization schemes for reproducing both the bubble and the transition is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The Speed Bump flow model was designed by Boeing to provide a mildly three-dimensional flow with separation from a very smooth surface, strongly controlled by the turbulence. Experiments are conducted by several teams, as are simulations, over a range of Reynolds numbers. Direct Numerical Simulations (DNS) are not possible for the full 3D geometry of width L, leading several groups to conduct DNS over a two-dimensional geometry, in other words the cross-section of the full geometry, with periodic lateral conditions and a typical domain width of 0.04L. This does not allow precise comparisons with experiment, but code-to-code comparison is instructive. A shallow separation bubble is present, as intended. The domain width becomes marginal after reattachment, where the boundary layer is much thicker. The Reynolds number based on L has been 106, so far in the literature, which causes partial relaminarization and tends to defeat the purpose of testing turbulence models. Flow visualisation is clear on this. Here, we present results at the Reynolds number 106 and 1.4 × 106, and the higher value essentially eliminates relaminarization. Detailed results are shown, including studies of domain width, grid resolution, and numerical dissipation. The turbulence models give inaccurate results for skin friction, already in the intense favourable pressure gradient, which causes the formation of an internal boundary layer; the separation prediction on the other hand is reasonable. The wall curvature seems to play a role. The present results also provide trustworthy data to test Large-Eddy Simulation (LES), especially if using a Wall Model (WMLES). The comparisons will have a preliminary character until the results of the ongoing detailed experiments and of DNS at even higher Reynolds number and with a wider domain are available and carefully compared.  相似文献   

10.
采用大涡模拟(LES)方法,并结合动力学亚格子尺度应力(SGS)模型,通过数值求解柱坐标系下的滤波Navier-Stokes方程,研究了绕管轴旋转圆管内的湍流流动特性.为验证计算的可靠性,以及动力学SGS模型对于旋转湍流的适用性,将大涡模拟计算所得的结果,与相应的直接模拟(DNS)结果和实验数据进行了对比验证,吻合良好.进一步对旋转圆管湍流的物理机理进行了探讨,研究了湍流特性随旋转速率的变化规律.当旋转速率增加时,湍流流动有层流化的发展趋势.基于湍动能变化的关系,分析了旋转效应对湍流脉动生成的抑制作用.  相似文献   

11.
The influence of mesh motion on the quality of large eddy simulation (LES) was studied in the present article. A three‐dimensional, turbulent pipe flow (Reτ=360) was considered as a test case. Simulations with both stretching and static meshes were carried out in order to understand how mesh motion affects the turbulence statistics. The spatial filtering of static and moving mesh direct numerical simulation (DNS) data showed how an ideal LES would perform, while the comparison of DNS cases with static and moving meshes revealed that no significant numerical errors arise from the mesh motion when the simulation is fully resolved. The comparison of the filtered fields of the DNS with a moving mesh with the corresponding LES fields revealed different responses to mesh motion from different numerical approaches. A straightforward test was applied in order to verify that the moving mesh works consistently in LES: when the mesh is stretched in the streamwise direction, the moving mesh results should be in between the two extremal resolutions between which the mesh is stretched. Numerical investigations using four different LES approaches were carried out. In addition to the Smagorinsky model, three implicit LES approaches were used: linear interpolation (non‐dissipative), the Gamma limiter (dissipative), and the scale‐selective discretisation (slightly dissipative). The results indicate that while the Smagorinsky and the scale‐selective discretisation approaches produce results consistent with the resolution of the non‐static mesh, the implicit LES with linear interpolation or the Gamma scheme do not. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A new approach to turbulence simulation, based on a combination of large eddy simulation (LES) for the whole flow and an array of non–space‐filling quasi‐direct numerical simulations (QDNS), which sample the response of near‐wall turbulence to large‐scale forcing, is proposed and evaluated. The technique overcomes some of the cost limitations of turbulence simulation, since the main flow is treated with a coarse‐grid LES, with the equivalent of wall functions supplied by the near‐wall sampled QDNS. Two cases are tested, at friction Reynolds number Reτ=4200 and 20000. The total grid point count for the first case is less than half a million and less than 2 million for the second case, with the calculations only requiring a desktop computer. A good agreement with published direct numerical simulation (DNS) is found at Reτ=4200, both in the mean velocity profile and the streamwise velocity fluctuation statistics, which correctly show a substantial increase in near‐wall turbulence levels due to a modulation of near‐wall streaks by large‐scale structures. The trend continues at Reτ=20000, in agreement with experiment, which represents one of the major achievements of the new approach. A number of detailed aspects of the model, including numerical resolution, LES‐QDNS coupling strategy and subgrid model are explored. A low level of grid sensitivity is demonstrated for both the QDNS and LES aspects. Since the method does not assume a law of the wall, it can in principle be applied to flows that are out of equilibrium.  相似文献   

13.
Among the various hybrid methodologies, Speziale's very large eddy simulation (VLES) is one that was proposed very early. It is a unified simulation approach that can change seamlessly from Reynolds Averaged Navier–Stokes (RANS) to direct numerical simulation (DNS) depending on the numerical resolution. The present study proposes a new improved variant of the original VLES model. The advantages are achieved in two ways: (i) RANS simulation can be recovered near the wall which is similar to the detached eddy simulation concept; (ii) a LES subgrid scale model can be reached by the introduction of a third length scale, that is, the integral turbulence length scale. Thus, the new model can provide a proper LES mode between the RANS and DNS limits. This new methodology is implemented in the standard k ? ? model. Applications are conducted for the turbulent channel flow at Reynolds number of Reτ = 395, periodic hill flow at Re = 10,595, and turbulent flow past a square cylinder at Re = 22,000. In comparison with the available experimental data, DNS or LES, the new VLES model produces better predictions than the original VLES model. Furthermore, it is demonstrated that the new method is quite efficient in resolving the large flow structures and can give satisfactory predictions on a coarse mesh. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This paper demonstrates that a good compromise is possible with the advected grid explicit (AGE) method. Starting from the same initial field as a previous spectral DNS, AGE method simulations of a planar turbulent wake were carried out as DNS, and then at three levels of reduced resolution. The latter cases were in a sense large‐eddy simulations (LES), although no specific sub‐grid‐scale model was used. Results for the two DNS methods, including variances and power spectra, were very similar, but the AGE simulation required much less computational effort. Small‐scale information was lost in the reduced resolution runs, but large‐scale mean and instantaneous properties were reproduced quite well, with further large reductions in computational effort. Quality of results becomes more sensitive to the value chosen for one of the AGE method parameters as resolution is reduced, from which it is inferred that the numerical stability procedure controlled by the parameter is acting in part as a sub‐grid‐scale model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A synthetic turbulence generation (STG) method for subsonic and supersonic flows at low and moderate Reynolds numbers to provide inflow distributions of zonal Reynolds-averaged Navier–Stokes (RANS) – large-eddy simulation (LES) methods is presented. The STG method splits the LES inflow region into three planes where a local velocity signal is decomposed from the turbulent flow properties of the upstream RANS solution. Based on the wall-normal position and the local flow Reynolds number, specific length and velocity scales with different vorticity content are imposed at the inlet plane of the boundary layer. The quality of the STG method for incompressible and compressible zero-pressure gradient boundary layers is shown by comparing the zonal RANS–LES data with pure LES, pure RANS, and direct numerical simulation (DNS) solutions. The distributions of the time and spanwise wall-shear stress, Reynolds stress distributions, and two point correlations of the zonal RANS–LES simulations are smooth in the transition region and in good agreement with the pure LES and reference DNS findings. The STG approach reduces the RANS-to-LES transition length to less than four boundary-layer thicknesses.  相似文献   

16.
The transitional separated–reattached flow on a flat plate with a blunt leading edge under 2% free-stream turbulence (FST) is numerically simulated using the Large-eddy simulation (LES) approach. The Reynolds number based on the free-stream velocity and the plate thickness is 6500. A dynamic subgrid-scale model is employed and the LES results compare well with the available experimental data.It is well known that FST enhances shear-layer entrainment rates, reduces the mean reattachment distance, and causes early transition to turbulence leading to an early breakdown of the separated boundary layer. Many experimental studies have shown that different vortex shedding frequencies exist, specially the so called low-frequency flapping when there is a separation bubble but its mechanism is still not completely understood. The previous study by us without free-stream turbulence (NFST) did not show the existence of such a low-frequency flapping of the shear layer and it is not clear what the effects of FST will have on these shedding modes. Detailed analysis of the LES data has been presented in the present paper and the low-frequency flapping has not been detected in the current study.  相似文献   

17.
The physical space version of the stretched vortex subgrid scale model is tested in LES of the turbulent lid‐driven cubic cavity flow. LES is carried out by using a higher order finite‐difference method. The effects of different vortex orientation models and subgrid turbulence spectrums are assessed through comparisons of the LES predictions against DNS. Three Reynolds numbers 12000, 18000, and 22000 are studied. Good agreement with the DNS data for the mean and fluctuating quantities is observed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Measuring turbulence energy with PIV in a backward-facing step flow   总被引:4,自引:0,他引:4  
Turbulence energy is estimated in a backward-facing step flow with three-component (3C, stereo) particle image velocimetry (PIV). Estimates of turbulence energy transport equation for convection, turbulence transport, turbulence production, viscous diffusion, and viscous dissipation in addition to Reynolds stresses are computed directly from PIV data. Almost all the turbulence energy terms in the backward-facing step case can be measured with 3C PIV, except the pressure-transport term, which is obtained by difference of the other turbulence energy terms. The effect of the velocity spatial sampling resolution in derivative estimations is investigated with four two-dimensional PIV measurement sets. This sampling resolution information is used to calibrate the turbulence energies estimated by 3C PIV measurements. The focus of this study is on the separated shear layer of the backward-facing step. The measurements with 3C PIV are carried out in a turbulent water flow at Reynolds number of about 15,000, based on the step height h and the inlet streamwise maximum mean velocity U0. The expansion ratio (ER) is 1.5. Turbulence energy budget profiles in locations x/h=4, x/h=6, and x/h=10 are compared with DNS data of a turbulent flow. The shapes of profiles agree well with each other. Different ERs between the PIV case (1.5) and the DNS case (1.2) cause higher values for the turbulence energies measured by PIV than the energies by DNS when x/h=10 is approached. PIV results also show that the turbulence energy level in these experiments is generally higher than that of the DNS data.  相似文献   

19.
《力学快报》2022,12(6):100389
Fourier neural operator (FNO) model is developed for large eddy simulation (LES) of three-dimensional (3D) turbulence. Velocity fields of isotropic turbulence generated by direct numerical simulation (DNS) are used for training the FNO model to predict the filtered velocity field at a given time. The input of the FNO model is the filtered velocity fields at the previous several time-nodes with large time lag. In the a posteriori study of LES, the FNO model performs better than the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) in the prediction of the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and the instantaneous flow structures. Moreover, the proposed model can significantly reduce the computational cost, and can be well generalized to LES of turbulence at higher Taylor-Reynolds numbers.  相似文献   

20.
In this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub‐grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub‐grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence and are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号