首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A plane supersonic flow with symmetric perpendicular injection of jets through slots in the walls is numerically simulated with the use of Navier–Stokes equations. The effect of the jet pressure ratio and Mach number on the flow structure is considered. The angle of inclination of the shock wave and the separationregion length are found as functions of the jet pressure ratio. The influence of the jet pressure ratio on the increase in the lift force arising owing to interaction of the flow with the injected jet is found.  相似文献   

2.
The near field dynamics of transitional buoyant reactive jets established on noncircular geometries, including a rectangular nozzle with an aspect ratio of 2:1 and a square nozzle with the same cross-sectional area, are investigated by three-dimensional spatial direct numerical simulations. Without applying external perturbations at the inflow boundary, large vortical structures develop naturally in the flow field due to buoyancy effects. Simulation results and analysis describe the details and clarify mechanisms of vortex dynamics of the noncircular buoyant reactive jets. The interaction between density gradients and gravity initiates the flow vorticity. Among the major vorticity transport terms, the gravitational term mainly promotes flow vorticity in the cross-streamwise direction. For the baroclinic torque, it can either create or destroy flow vorticity depending on the local flow structure. The vortex stretching term has different effects on the streamwise and cross-streamwise vorticity. Streamwise vorticity is mainly created by vortex stretching, while this term can either create or destroy cross-streamwise vorticity. Under the coupling effects of buoyancy and noncircular nozzle geometry, three-dimensional vortex interactions lead to the transitional behavior of the reactive jets. Simulations also show that the rectangular jet is more vortical than the square jet. The rectangular jet has a stronger tendency of transition to turbulence at the downstream due to the aspect ratio effect. Mean flow property calculations show that the rectangular buoyant reactive jet has a higher entrainment rate than its square counterpart. Received 13 December 2000 and accepted 24 July 2001  相似文献   

3.
非定常俯抑振荡下的横向喷流数值模拟   总被引:2,自引:0,他引:2  
赵海洋  刘伟  任兵 《力学季刊》2007,28(3):363-368
采用高精度格式数值求解RANS方程,研究了定常状态下横向喷流流场,压力分布计算结果与实验结果基本吻合,并捕捉到喷流干扰流场中多种流动结构.在非定常计算过程中,飞行器的振动引起了法向力和俯仰力矩系数的相位滞后,推力放大因子随俯仰角周期变化.飞行器振动过程中,喷流流场的动态气动特性与稳态喷流有明显的区别,因此在利用横向喷流对飞行器进行姿态控制时,应该考虑由于飞行器姿态的变化对横向喷流所产生的非定常影响问题.  相似文献   

4.
We present the results of an experimental investigation and numerical simulation of the gasdynamic structure of underexpanded dissociated-air jets and the heat transfer in these strongly nonequilibrium flows under the test conditions realized in the 100-kW electrodeless VGU-4 plasma generator of the Institute for Problems in Mechanics of the Russian Academy of Sciences (IPM RAS). The flow and heat transfer analysis is carried out on the basis of measurements of the static pressure in the plenum chamber, at the sonic nozzle exit, and on the low-pressure chamber wall, the stagnation pressure on the jet axis using a Pitot tube, and the heat transfer at the stagnation points of water-cooled models placed along the jet axis. The numerical simulation, based on complete Navier-Stokes equations, includes the calculation of (1) equilibrium air plasma flows in the discharge channel of the VGU-4 plasma generator; (2) underexpanded nonequilibrium dissociated-air jet outflow into the ambient space; and (3) axisymmetric jet flow past cylindrical models.  相似文献   

5.
采用NND方法计算三维喷管气流场   总被引:1,自引:0,他引:1  
本文运用NND显式差分格式,计算了三维喷管气流场。气流场计算的基本方程为一般贴体坐标系下三维守恒型的欧拉方程。采用了时间分裂法和Steger-Warming矢通量分裂技术。在喷管内沿周向的每个由轴线和壁面构成的子午面上根据泊松方程生成贴体网格。本文运用三维程序计算了轴对称JPL喷管,同时与实验结果和前人采用轴对称二维程序所计算的结果做了对比。最后,本文还计算了三维矢量喷管,计算结果与现有的实验结果一致。通过轴对称JPL喷管和三维矢量喷管的计算考核,表明建立的算法和编写的计算程序是正确的。文中提出了采用子午面形式的贴体网格时奇性轴的处理方法。计算结果表明在喷管壁面处,马赫数与压强的计算结果与实验值吻合较好,而在喷管轴线处,只有当网格较密时,才能得出与实验结果接近的计算结果。  相似文献   

6.
采用大涡模拟方法数值模拟了展向椭圆喷嘴的湍流横向射流,对其大尺度结构的时空演化和湍流脉动速度场的时间序列分析、频谱分析、PDF分析以及时、空截面上的统计平均特性进行分析.结果表明,在射流出口附近的下游核心区中速度脉动剧烈,显现出明显的湍流特征.除了三维涡环脱落、扭曲、变形、摆动所对应频率之外,还存在很宽的湍流基频,它与在喷嘴出口附近产生的三维涡环的时空演化过程密切相关.由于展向椭圆喷嘴的湍流横向射流中的三维涡环快速脱落和强相互作用导致射流尾迹中的强湍流脉动,展向椭圆喷嘴湍流横向射流的PDF空间演化特征结构复杂.在射流核心区的湍流偏应力变化平缓,其统计平均值分布接近左右对称.展向椭圆喷嘴的湍流横向射流脉动速度场具有极为复杂的统计行为,与流向椭圆喷嘴相比具有更好的掺混能力.  相似文献   

7.
8.
An experimental study was conducted to investigate the effect of nozzle geometry on the mixing characteristics and turbulent transport phenomena in turbulent jets. The nozzle geometry examined were round, square, cross, eight-corner star, six-lobe daisy, equilateral triangle as well as ellipse and rectangle each with aspect ratio of 2. The jets were produced from sharp linear contoured nozzles which may be considered intermediate to the more widely studied smooth contraction and orifice nozzles. A high resolution particle image velocimetry was used to conduct detailed velocity measurements in the near and intermediate regions. It was observed that the lengths of the potential cores and the growth rates of turbulence intensities on the jet centerline are comparable with those of the orifice jets. The results indicate that the decay and spreading rates are lower than reported for orifice jets but higher than results for smooth contoured jets. The jets issuing from the elliptic and rectangular nozzles have the best mixing performance while the least effective mixing was observed in the star jet. The distributions of the Reynolds stresses and turbulent diffusion clearly showed that turbulent transport phenomena are quite sensitive to nozzle geometry. Due to the specific shape of triangular and daisy jets, the profiles of mean velocity and turbulent quantities are close to each other in their minor and major planes while in the elliptic and rectangular jets are considerably different. They also exhibit more isotropic behavior compared to the elliptic and rectangular jets. In spite of significant effects of nozzle geometry on mean velocity and turbulent quantities, the integral length scales are independent of changes in nozzle geometry.  相似文献   

9.
Fluid Dynamics - Experimental investigations of liquid jet flows performed earlier in the presence of an artificial cavity having a negative cavitation number showed that under certain conditions...  相似文献   

10.
Direct numerical and large eddy simulation (DNS and LES) are applied to study passive scalar mixing and intermittency in turbulent round jets. Both simulation techniques are applied to the case of a low Reynolds number jet with Re = 2,400, whilst LES is also used to predict a high Re = 68,000 flow. Comparison between time-averaged results for the scalar field of the low Re case demonstrate reasonable agreement between the DNS and LES, and with experimental data and the predictions of other authors. Scalar probability density functions (pdfs) for this jet derived from the simulations are also in reasonable accord, although the DNS results demonstrate the more rapid influence of scalar intermittency with radial distance in the jet. This is reflected in derived intermittency profiles, with LES generally giving profiles that are too broad compared to equivalent DNS results, with too low a rate of decay with radial distance. In contrast, good agreement is in general found between LES predictions and experimental data for the mixing field, scalar pdfs and external intermittency in the high Reynolds number jet. Overall, the work described indicates that improved sub-grid scale modelling for use with LES may be beneficial in improving the accuracy of external intermittency predictions by this technique over the wide range of Reynolds numbers of practical interest.  相似文献   

11.
Numerical simulations of a very small amplitude acoustic wave interacting with a shock wave in a quasi-ID convergent-divergent nozzle is performed using an unstructured finite volume algorithm with piece-wise linear, least square reconstruction, Roe flux difference splitting, and second-order MacCormack time marching. First, the spatial accuracy of the algorithm is evaluated for steady flows with and without the normal shock by running the simulation with a sequence of successively finer meshes. Then the accuracy of the Roe flux difference splitting near the sonic transition point is examined for different reconstruction schemes. Finally, the unsteady numerical solutions with the acoustic perturbation are presented and compared with linear theory results.  相似文献   

12.
A computational analysis of excited round jets is presented with emphasis on jet bifurcation phenomenon due to superposition of axial and flapping forcing terms. Various excitation parameters are examined including the amplitudes of the forcing, their frequencies and phase shift. It is shown that alteration of these parameters significantly influences the spatial jet evolution. This dependence may be used to control the jet behaviour in a wide range of qualitatively different flow structures, starting from a modification of the spreading rate of a single connected jet, through large scale deformation of an asymmetric jet, onto jet bifurcation leading to a doubly and even triply split time-averaged jet, displaying different strengths and locations of the branches. We establish that: (i) jet splitting is possible only when the amplitudes of the forcing terms are comparable to or larger than the level of natural turbulence; (ii) the angle between the developing jet branches can be directly controlled by the frequency of the axial forcing and the phase shift between axial and flapping forcing. An optimum forcing frequency is determined, leading to the largest spreading rate.  相似文献   

13.
The present paper deals with suppression of vortex induced vibrations (VIV) by introducing radial water jets from circular openings in the wall of the oscillating cylinder. Overpressure within the water-filled cylinder propels water jets blowing out into the ambient flow as a means to alter the vortex shedding process. This flow will introduce a disturbance that is expected to yield reduced VIV amplitudes. Results are presented from experiments in a towing tank testing a spring-supported cylinder with two straight rows of radial water jets along the the cylinder, located at positions +120° and?120° on the cylinder circumference. A smooth cylinder with no openings is tested for comparison. Direct Numerical Simulations (DNS) have been performed using the Spectral/hp element code Nεκταr. Outflow through openings in the cylinder wall is modeled, and a parameter study is performed where number of jets as well as jet location on the cylinder circumference and jet flow rate are varied.  相似文献   

14.
Ascent of a large-scale thermal in a standard atmosphere is calculated with the use of the Reynolds equations and the k model of turbulence, which takes into account temperature inhomogeneity and vorticity of the flow, and the Euler equations. Results of numerical calculations of a flow examined experimentally are presented. Gas-dynamic and turbulent flow parameters obtained in calculations and experiments are compared.  相似文献   

15.
The present paper investigates the impact of the velocity and density ratio on the turbulent mixing process in gas turbine blade film cooling. A cooling fluid is injected from an inclined pipe at α=30° into a turbulent boundary layer profile at a freestream Reynolds number of Re ∞  = 400,000. This jet-in-a-crossflow (JICF) problem is investigated using large-eddy simulations (LES). The governing equations comprise the Navier–Stokes equations plus additional transport equations for several species to simulate a non-reacting gas mixture. A variation of the density ratio is simulated by the heat-mass transfer analogy, i.e., gases of different density are effused into an air crossflow at a constant temperature. An efficient large-eddy simulation method for low subsonic flows based on an implicit dual time-stepping scheme combined with low Mach number preconditioning is applied. The numerical results and experimental velocity data measured using two-component particle-image velocimetry (PIV) are in excellent agreement. The results show the dynamics of the flow field in the vicinity of the jet hole, i.e., the recirculation region and the inclination of the shear layers, to be mainly determined by the velocity ratio. However, evaluating the cooling efficiency downstream of the jet hole the mass flux ratio proves to be the dominant similarity parameter, i.e., the density ratio between the fluids and the velocity ratio have to be considered.  相似文献   

16.
Experimental results of the mixing characteristics of a low-frequency flapping jet from a self-exciting nozzle are presented. The simple fluidic device used to generate the flapping motion is also described. The nozzle contains no external trigger and, unlike the flip-flop nozzle of Viets, contains no external feedback path. Both conventional and conditional averaging schemes are employed to characterise the turbulent mixing characteristics of the jet using data obtained from hot-wire anemometry. Flow-visualisation is used to characterise the flapping motion. It is revealed that the dynamic flapping motion enhances the large-scale mixing of the jet while concurrently suppressing the generation of the fine-scale turbulence. The results also indicate that high turbulence intensities, initiated by the flapping motion, are sustained even in the far-field flow region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Large-Eddy simulations (LES) of spatially evolving turbulent buoyant round jets have been carried out with two different density ratios. The numerical method used is based on a low-Mach-number version of the Navier–Stokes equations for weakly compressible flow using a second-order centre-difference scheme for spatial discretization in Cartesian coordinates and an Adams–Bashforth scheme for temporal discretization. The simulations reproduce the typical temporal and spatial development of turbulent buoyant jets. The near-field dynamic phenomenon of puffing associated with the formation of large vortex structures near the plume base with a varicose mode of instability and the far-field random motions of small-scale eddies are well captured. The pulsation frequencies of the buoyant plumes compare reasonably well with the experimental results of Cetegen (1997) under different density ratios, and the underlying mechanism of the pulsation instability is analysed by examining the vorticity transport equation where it is found that the baroclinic torque, buoyancy force and volumetric expansion are the dominant terms. The roll-up of the vortices is broken down by a secondary instability mechanism which leads to strong turbulent mixing and a subsequent jet spreading. The transition from laminar to turbulence occurs at around four diameters when random disturbances with a 5% level of forcing are imposed to a top-hat velocity profile at the inflow plane and the transition from jet-like to plume-like behaviour occurs further downstream. The energy-spectrum for the temperature fluctuations show both −5/3 and −3 power laws, characteristic of buoyancy-dominated flows. Comparisons are conducted between LES results and experimental measurements, and good agreement has been achieved for the mean and turbulence quantities. The decay of the centreline mean velocity is proportional to x −1/3 in the plume-like region consistent with the experimental observation, but is different from the x −1 law for a non-buoyant jet, where x is the streamwise location. The distributions of the mean velocity, temperature and their fluctuations in the near-field strongly depend upon the ratio of the ambient density to plume density ρa0. The increase of ρa0 under buoyancy forcing causes an increase in the self-similar turbulent intensities and turbulent fluxes and an increase in the spatial growth rate. Budgets of the mean momentum, energy, temperature variance and turbulent kinetic energy are analysed and it is found that the production of turbulence kinetic energy by buoyancy relative to the production by shear is increased with the increase of ρa0. Received 16 June 2000 and accepted 26 June 2001  相似文献   

18.
An experimental study was carried out to investigate the resuspension of heavy particles of a sediment bed by axi-symmetric turbulent jets issuing from below. The case of point jets and loosely-held monodispersed particles was considered, in particular, the cases of a single jet and an array of jets located in the intersection points of a square grid. The aim was to map the flow field and the nature of sediment distribution as a function of governing parameters and to parameterize salient observables such as the maximum height of rise of sediments. The results were extrapolated to study sediment resuspension in karstic lakes, especially lake Banyoles located in Catalonia, northeastern Spain.  相似文献   

19.
高能炸药散心爆轰波绕射传播的数值模拟   总被引:7,自引:2,他引:7  
从曲面爆轰波的Hugoniot 关系式出发,应用燃烧模型模拟散心爆轰波的传播,分析了空间步长不是足够小时,不能同时准确给出爆轰波走时及波阵面物理量的原因。对球壳装药散心爆轰波的长程绕射作了二维计算,应用燃烧模型并细分空间网格。除起爆点附近,计算的爆轰波走时与实验相差均在0 .2s 以内;稳定传播的爆轰波波阵面压力计算值接近pJ。可见,应用燃烧模型模拟散心爆轰波的传播,化学反应区内的空间步长需足够小。最后对Program 燃烧模型不能很好地模拟多维效应作了分析。  相似文献   

20.
根据人体在荡秋千过程中的动作特点,分别建立了秋千系统的四刚体力学模型和三刚体-柔 索力学模型,应用多体系统动力学理论数值模拟了荡秋千的动力学过程,分析了人体上下屈 伸频率和初始相位对秋千摆荡幅度的影响,获得了一些具有重要价值的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号