首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A meaningful rank as well as efficient methods for computing such a rank are necessary in many areas of applications. Major methodologies for ranking often exploit principal eigenvectors. Kleinberg’s HITS model is one of such methodologies. The standard approach for computing the HITS rank is the power method. Unlike the PageRank calculations where many acceleration schemes have been proposed, relatively few works on accelerating HITS rank calculation exist. This is mainly because the power method often works quite well in the HITS setting. However, there are cases where the power method is ineffective, moreover, a systematic acceleration over the power method is desirable even when the power method works well. We propose a practical acceleration scheme for HITS rank calculations based on the filtered power method by adaptive Chebyshev polynomials. For cases where the gap-ratio is below 0.85 for which the power method works well, our scheme is about twice faster than the power method. For cases where gap-ratio is unfavorable for the power method, our scheme can provide significant speedup. When the ranking problems are of very large scale, even a single matrix–vector product can be expensive, for which accelerations are highly necessary. The scheme we propose is desirable in that it provides consistent reduction in number of matrix–vector products as well as CPU time over the power method, with little memory overhead.  相似文献   

2.
This study deals with obtaining numerical solutions of two-dimensional (2D) fractional cable equation in neuronal dynamics by using a recently introduced meshless method. In solution process at first stage, time derivatives that are appeared in the considered problem are discretized by using finite difference method. Then a meshless method based on hybridization of Gaussian and cubic kernels is developed in local fashion. The problem is solved both on regular and irregular domians. L and RMS error norms are calculated and compared with other numerical methods in literature as well as exact solutions. Also, obtained condition numbers are monitored. Numerical simulations show that local hybrid kernel meshless method is a thriving method for solving 2D fractional cable equation on regular and irregular domians.  相似文献   

3.
In this paper, we presented a new projection and contraction method for linear variational inequalities, which can be regarded as an extension of He's method. The proposed method includes several new methods as special cases. We used a self-adaptive technique to adjust parameter β at each iteration. This method is simple, the global convergence is proved under the same assumptions as He's method. Some preliminary computational results are given to illustrate the efficiency of the proposed method.  相似文献   

4.
In this paper, a new method categorized as a modification to the Q–h equations is proposed for the analysis of pipe networks. The method is inspired by the Kani method which is used for analysis of structural frames. The new method can be considered as an iterative procedure which does not require a large system of nonlinear equations to be solved simultaneously. The main advantages of the proposed method are relative simplicity in formulation and programming, and rapid and smooth convergence of initially guessed values. To show the robustness and convergence of the present method, several pipe networks are analyzed, and the results are compared with those of the conventional methods.  相似文献   

5.
There are several methods in the literature for solving transportation problems by representing the parameters as normal fuzzy numbers. Chiang [J. Chiang, The optimal solution of the transportation problem with fuzzy demand and fuzzy product, J. Inform. Sci. Eng. 21 (2005) 439-451] pointed out that it is better to represent the parameters as (λρ) interval-valued fuzzy numbers instead of normal fuzzy numbers and proposed a method to find the optimal solution of single objective transportation problems by representing the availability and demand as (λρ) interval-valued fuzzy numbers. In this paper, the shortcomings of the existing method are pointed out and to overcome these shortcomings, a new method is proposed to find solution of a linear multi-objective transportation problem by representing all the parameters as (λρ) interval-valued fuzzy numbers. To illustrate the proposed method a numerical example is solved. The advantages of the proposed method over existing method are also discussed.  相似文献   

6.
This paper presents a new approach for solving accurate approximate analytical higher-order solutions for strong nonlinear Duffing oscillators with cubic–quintic nonlinear restoring force. The system is conservative and with odd nonlinearity. The new approach couples Newton’s method with harmonic balancing. Unlike the classical harmonic balance method, accurate analytical approximate solutions are possible because linearization of the governing differential equation by Newton’s method is conducted prior to harmonic balancing. The approach yields simple linear algebraic equations instead of nonlinear algebraic equations without analytical solution. Using the approach, accurate higher-order approximate analytical expressions for period and periodic solution are established. These approximate solutions are valid for small as well as large amplitudes of oscillation. In addition, it is not restricted to the presence of a small parameter such as in the classical perturbation method. Illustrative examples are presented to verify accuracy and explicitness of the approximate solutions. The effect of strong quintic nonlinearity on accuracy as compared to cubic nonlinearity is also discussed.  相似文献   

7.
In this paper, third-order 3-stage diagonally implicit Runge–Kutta–Nystrom method embedded in fourth-order 4-stage for solving special second-order initial value problems is constructed. The method has the property of minimized local truncation error as well as the last row of the coefficient matrix is equal to the vector output. The stability of the method is investigated and a standard set of test problems are tested upon and comparisons on the numerical results are made when the same set of test problems are reduced to first-order system and solved using existing Runge–Kutta method. The results clearly shown the advantage and the efficiency of the new method.  相似文献   

8.
A Legendre Galerkin–Chebyshev collocation method for Burgers-likeequations is developed. This method is based on the Legendre–Galerkinvariational form, but the nonlinear term and the right-handterm are treated by Chebyshev–Gauss interpolation. Errorestimates of the semi-discrete scheme and the fully discretescheme are given in the L2-norm. Numerical results indicatethat our method is as stable and accurate as the standard Legendrecollocation method, and as efficient and easy to implement asthe standard Chebyshev collocation method.  相似文献   

9.
Abstract

We propose and analyze a family of successive projection methods whose step direction is the same as the Landweber method for solving nonlinear ill-posed problems that satisfy the Tangential Cone Condition (TCC). This family encompasses the Landweber method, the minimal error method, and the steepest descent method; thus, providing an unified framework for the analysis of these methods. Moreover, we define new methods in this family, which are convergent for the constant of the TCC in a range twice as large as the one required for the Landweber and other gradient type methods. The TCC is widely used in the analysis of iterative methods for solving nonlinear ill-posed problems. The key idea in this work is to use the TCC in order to construct special convex sets possessing a separation property, and to successively project onto these sets. Numerical experiments are presented for a nonlinear two-dimensional elliptic parameter identification problem, validating the efficiency of our method.  相似文献   

10.
Rodolfo Rodríguez The aim of this paper is to analyse a mixed finite-element methodfor computing the vibration modes of a Timoshenko curved rodwith arbitrary geometry. Optimal order error estimates are provedfor displacements, rotations and shear stresses of the vibrationmodes, as well as a double order of convergence for the vibrationfrequencies. These estimates are essentially independent ofthe thickness of the rod, which leads to the conclusion thatthe method is locking-free. Numerical tests are reported inorder to assess the performance of the method.  相似文献   

11.
In this paper, we use the variational iteration method (VIM) for optimal control problems. First, optimal control problems are transferred to Hamilton–Jacobi–Bellman (HJB) equation as a nonlinear first order hyperbolic partial differential equation. Then, the basic VIM is applied to construct a nonlinear optimal feedback control law. By this method, the control and state variables can be approximated as a function of time. Also, the numerical value of the performance index is obtained readily. In view of the convergence of the method, some illustrative examples are presented to show the efficiency and reliability of the presented method.  相似文献   

12.
A H1‐Galerkin mixed finite element method is applied to the Kuramoto–Sivashinsky equation by using a splitting technique, which results in a coupled system. The method described in this article may also be considered as a Petrov–Galerkin method with cubic spline space as trial space and piecewise linear space as test space, since the second derivative of a cubic spline is a linear spline. Optimal‐order error estimates are obtained without any restriction on the mesh for both semi‐discrete and fully discrete schemes. The advantage of this method over that presented in Manickam et al., Comput. Math. Appl. vol. 35(6) (1998) pp. 5–25; for the same problem is that the size (i.e., (n + 1) × (n + 1)) of each resulting linear system is less than half of the size of the linear system of the earlier method, where n is the number of subintervals in the partition. Further, there is a requirement of less regularity on exact solution in this method. The results are validated with numerical examples. Finally, instability behavior of the solution is numerically captured with this method.  相似文献   

13.
This paper presents a method for determining the nonlinear dynamic responses of structures under moving loads. The load is considered as a four degrees-of-freedom system with linear suspensions and tires flexibility, and the structure is modeled as an Euler–Bernoulli beam with simply supported at both ends. The nonlinear dynamic interaction of the load–structure system is discussed, and Kelvin−Voigt material model is employed for the beam. The nonlinear partial differential equations of the dynamic interaction are derived by using the von Kármán nonlinear theory and D'Alembert's principle. Based on the Galerkin method, the partial differential equations of the system are transformed into nonlinear ordinary equations, which can be solved by using the Newmark method and Newton−Raphson iteration method. To validate the approach proposed in this paper, the comparison are performed using a moving mass and a moving oscillator as the excitation sources, and the investigations demonstrate good reliability.  相似文献   

14.
In this paper a method is given for constructing the solution to the exterior Dirichlet problem for the Helmholtz equation in three dimensions. This method is modeled after the procedure of Colton and Kleinman (Proc. Roy. Soc. Edin. 86A(1980), 29–42) for solving the corresponding two-dimensional problem. The scattering problem is reformulated as an integral equation and it is shown that its solution can be represented as a convergent Neumann series for small values of the wave number. Comparisons are made between the present method and known results. Examples are given which illustrate the method.  相似文献   

15.
Several methods have been proposed to calculate a rigorous error bound of an approximate solution of a linear system by floating-point arithmetic. These methods are called ‘verification methods’. Applicable range of these methods are different. It depends mainly on the condition number and the dimension of the coefficient matrix whether such methods succeed to work or not. In general, however, the condition number is not known in advance. If the dimension or the condition number is large to some extent, then Oishi–Rump’s method, which is known as the fastest verification method for this purpose, may fail. There are more robust verification methods whose computational cost is larger than the Oishi–Rump’s one. It is not so efficient to apply such robust methods to well-conditioned problems. The aim of this paper is to choose a suitable verification method whose computational cost is minimum to succeed. First in this paper, four fast verification methods for linear systems are briefly reviewed. Next, a compromise method between Oishi–Rump’s and Ogita–Oishi’s one is developed. Then, an algorithm which automatically and efficiently chooses an appropriate verification method from five verification methods is proposed. The proposed algorithm does as much work as necessary to calculate error bounds of approximate solutions of linear systems. Finally, numerical results are presented.  相似文献   

16.
A cluster-based method for constructing sparse principal components is proposed. The method initially forms clusters of variables, using a new clustering approach called the semi-partition, in two steps. First, the variables are ordered sequentially according to a criterion involving the correlations between variables. Then, the ordered variables are split into two parts based on their generalized variance. The first group of variables becomes an output cluster, while the second one—input for another run of the sequential process. After the optimal clusters have been formed, sparse components are constructed from the singular value decomposition of the data matrices of each cluster. The method is applied to simple data sets with smaller number of variables (p) than observations (n), as well as large gene expression data sets with p ? n. The resulting cluster-based sparse principal components are very promising as evaluated by objective criteria. The method is also compared with other existing approaches and is found to perform well.  相似文献   

17.
Based on a mathematical model of laser beams, we present a spectral Galerkin method for solving a Cauchy problem of the Helmholtz equation in a rectangle, where the Cauchy data pairs are given at y?=?0 and boundary data are for x?=?0 and x?=?π. The solution is sought in the interval 0?<?y?<?1. The spectral Galerkin method is considered as a regularization method. We then perform an analysis on the error bound for this method. For illustration, several numerical experiments are constructed to demonstrate the feasibility and efficiency of the proposed method.  相似文献   

18.
《Optimization》2012,61(10):1717-1727
ABSTRACT

In this paper, we present a class of approximating matrices as a function of a scalar parameter that includes the Davidon-Fletcher-Powell and Broyden-Fletcher-Goldfarb-Shanno methods as special cases. A powerful iterative descent method for finding a local minimum of a function of several variables is described. The new method maintains the positive definiteness of the approximating matrices. For a region in which the function depends quadratically on the variables, no more than n iterations are required, where n is the number of variables. A set of computational results that verifies the superiority of the new method are presented.  相似文献   

19.
A finite element method based on the Laplace transform technique is developed for a two-dimensional problem in electromagneto-thermoelasticity. The problem is in the context of the following generalized thermoelasticity theories: Lord–Shulman’s, Green–Lindsay’s, the Chandrasekharaiah–Tzou, as well as the dynamic coupled theory. The Laplace transform method is applied to the time domain and the resulting equations are discretized using the finite element method. The inversion process is carried out using a numerical method based on a Fourier series expansions. Numerical results compared with those given in literature prove the good performance of the used method. It is demonstrated that the Chandrasekharaiah–Tzou theory can be considered as an extension of Lord–Shulman’s, and the generalized heat conduction mechanism is completely different from the classical Fourier’s in essence.  相似文献   

20.
This paper presents a numerical method for one-dimensional Burgers’ equation by the Hopf–Cole transformation and a reproducing kernel function, abbreviated as RKF. The numerical solution is given as explicit integral expressions with the RKF at each time step, so that the computation is fully parallel. The stability and error estimates are derived. Numerical results for some test problems are presented and compared with the exact solutions. Some numerical results are also compared with the results obtained by other methods. The present method is easily implemented and effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号