首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The dynamics of trehalose molecules in aqueous solutions confined in silica gel have been studied by quasielastic neutron scattering (QENS). Small-angle neutron scattering measurements confirmed the absence of both sugar clustering and matrix deformation of the gels, indicating that the results obtained are representative of homogeneous trehalose solutions confined in a uniform matrix. The pore size in the gel is estimated to be 18 nm, comparable to the distances in cell membranes. For the QENS measurements, the gel was prepared from D2O in order to accentuate the scattering from the trehalose. Values for the translational diffusion constant and effective jump distance were derived from model fits to the scattering function. Comparison with QENS and NMR results in the literature for bulk trehalose shows that confinement on a length scale of 18 nm has no significant effect on the translational diffusion of trehalose molecules.  相似文献   

2.
3.
We have conducted extensive molecular dynamics simulations to study the single particle and collective dynamics of water in solutions of N-acetyl-glycine-methylamide, a model hydrophilic protein backbone, and N-acetyl-leucine-methylamide, a model (amphiphilic) hydrophobic peptide, as a function of peptide concentration. Various analytical models commonly used in the analysis of incoherent quasielastic neutron scattering (QENS), are tested against the translational and rotational intermediate scattering function, the mean square displacement of the water molecule center of mass, and fits to the second-order rotational correlation function of water evaluated directly from the simulation data. We find that while the agreement between the model-free analysis and analytical QENS models is quantitatively poor, the qualitative feature of dynamical heterogeneity due to caging is captured well by all approaches. The center of mass collective and single particle intermediate scattering functions of water calculated for these peptide solutions show that the crossover from collective to single particle-dominated motions occurs at a higher value of Q for high concentration solutions relative to low concentration because of the greater restriction in movement of water molecules due to confinement. Finally, we have shown that at the same level of confinement of the two peptides, the aqueous amphiphilic amino acid solution shows the strongest deviation between single particle and collective dynamics relative to the hydrophilic amino acid, indicating that chemical heterogeneity induces even greater spatial heterogeneity in the water dynamics.  相似文献   

4.
The anisotropy of the dynamic properties of interlayer water molecules along the a and b axes of vanadium pentoxide hydrate, orthorhombic V2O5.nH2O, was studied using quasielastic neutron scattering (QENS) in relation to the anisotropy of the ac conductivity. The QENS spectra were analyzed using a stretched exponential function and a Lorentzian function. Both methods showed that the double-layer water molecules along the b axis are more mobile than those along the a axis. The difference in mobility between the two axes is more pronounced using a Lorentzian function analysis. These facts suggest that the diffusion coefficient of water molecules along the b axis is larger than that along the a axis, which is closely related to the ac conductivity originating from proton hopping. The anisotropy of the dynamic motion of water molecules can be attributed to the shorter b-axis length (b=3.60 A), with respect to the longer and less regular repetition of the atomic arrangements along the a axis (42.34 A).  相似文献   

5.
Using the inverse geometry spectrometer QENS at the Intense Pulsed Neutron Source of the Argonne National Laboratory, we collected quasielastic and inelastic neutron scattering spectra of hydrated tricalcium and dicalcium silicate, the main components of ordinary Portland cement. Data were obtained at different curing time, from a few hours to several months. Both the quasielastic and inelastic spectra have been analyzed at the same time according to the relaxing cage model, which is a model developed to describe the dynamics of water at supercooled temperatures. Short-time and long-time dynamics of hydration water in hydrated cement pastes as a function of the curing time have been simultaneously obtained. The results confirm the findings reported in previous experiments showing that it is possible to fit consistently the quasielastic and inelastic spectra giving insights on the effect of the curing time on the short-time vibrational dynamics of hydration water.  相似文献   

6.
7.
Dynamical motion of water sorbed in reverse osmosis polyamide membrane (ROPM) material is reported as studied by quasielastic neutron scattering (QENS) technique. The ROPM studied here has pore size of 4.4 Å as determined by positron annihilation lifetime spectroscopy. Analysis of the QENS data showed that diffusion behavior of the water within the membrane is describable by random jump diffusion model. A much longer residence time is found as compared to bulk water. Positive shift of the freezing point as observed in differential scanning calorimetry indicates presence of strong attractive interaction corroborating the slower diffusivity as observed in QENS.  相似文献   

8.
Motion of water molecules in Aerosol OT [sodium bis(2-ethylhexyl) sulfosuccinate, AOT] reverse micelles with water content w(0) ranging from 1 to 5 has been explored both experimentally through quasielastic neutron scattering (QENS) and with molecular dynamics (MD) simulations. The experiments were performed at the energy resolution of 85 microeV over the momentum transfer (Q) range of 0.36-2.53 A(-1) on samples in which the nonpolar phase (isooctane) and the AOT alkyl chains were deuterated, thereby suppressing their contribution to the QENS signal. QENS results were analyzed via a jump-diffusion/isotropic rotation model, which fits the results reasonably well despite the fact that confinement effects are not explicitly taken into account. This analysis indicates that in reverse micelles with low-water content (w(0)=1 and 2.5) translational diffusion rate is too slow to be detected, while for w(0)=5 the diffusion coefficient is much smaller than for bulk water. Rotational diffusion coefficients obtained from this analysis increase with w(0) and are smaller than for bulk water, but rotational mobility is less drastically reduced than translational mobility. Using the Faeder/Ladanyi model [J. Phys. Chem. B 104, 1033 (2000)] of reverse micelle interior, MD simulations were performed to calculate the self-intermediate scattering function F(S)(Q,t) for water hydrogens. Comparison of the time Fourier transform of this F(S)(Q,t) with the QENS dynamic structure factor S(Q,omega), shows good agreement between the model and experiment. Separate intermediate scattering functions F(S) (R)(Q,t) and F(S) (CM)(Q,t) were determined for rotational and translational motion. Consistent with the decoupling approximation used in the analysis of QENS data, the product of F(S) (R)(Q,t) and F(S) (CM)(Q,t) is a good approximation to the total F(S)(Q,t). We find that the decay of F(S) (CM)(Q,t) is nonexponential and our analysis of the MD data indicates that this behavior is due to lower water mobility close to the interface and to confinement-induced restrictions on the range of translational displacements. Rotational relaxation also exhibits nonexponential decay. However, rotational mobility of O-H bond vectors in the interfacial region remains fairly high due to the lower density of water-water hydrogen bonds in the vicinity of the interface.  相似文献   

9.
The general trend in soft matter is to study systems of increasing complexity which are more technologically and biologically relevant. This is facilitated by the capability of quasielastic neutron scattering (QENS) to selectively probe spatially resolved dynamical modes at a molecular level. The large number of recent publications using QENS for investigating complex and multi-component soft matter systems, serves as recognition of the suitability of this technique by the scientific community. Exploiting its complementarity with molecular dynamics (MD) simulations and other experimental techniques is the basis of a successful methodology for this scientific challenge. We illustrate the potential of QENS with three kinds of soft materials whose structural units increase in size/complexity: lipids, polymers and biomolecules.  相似文献   

10.
11.
The collective dynamics of liquid deuterium fluoride are studied by means of high-resolution quasielastic and inelastic neutron scattering over a range of four decades in energy transfer. The spectra show a low-energy coherent quasielastic component which arises from correlated stochastic motions as well as a broad inelastic feature originating from overdamped density oscillations. While these results are at variance with previous works which report on the presence of propagating collective modes, they are fully consistent with neutron diffraction, nuclear magnetic resonance, and infrared/Raman experiments on this prototypical hydrogen-bonded fluid.  相似文献   

12.
13.
We present a quasielastic neutron scattering (QENS) investigation of the component dynamics in an aqueous Poly(vinyl methyl ether) (PVME) solution (30% water content in weight). In the glassy state, an important shift in the Boson peak of PVME is found upon hydration. At higher temperatures, the diffusive-like motions of the components take place with very different characteristic times, revealing a strong dynamic asymmetry that increases with decreasing T. For both components, we observe stretching of the scattering functions with respect to those in the bulk and non-Gaussian behavior in the whole momentum transfer range investigated. To explain these observations we invoke a distribution of mobilities for both components, probably originated from structural heterogeneities. The diffusive-like motion of PVME in solution takes place faster and apparently in a more continuous way than in bulk. We find that the T-dependence of the characteristic relaxation time of water changes at T ? 225 K, near the temperature where a crossover from a low temperature Arrhenius to a high temperature cooperative behavior has been observed by broadband dielectric spectroscopy (BDS) [S. Cerveny, J. Colmenero and A. Alegri?a, Macromolecules, 38, 7056 (2005)]. This observation might be a signature of the onset of confined dynamics of water due to the freezing of the PVME dynamics, that has been selectively followed by these QENS experiments. On the other hand, revisiting the BDS results on this system we could identify an additional "fast" process that can be attributed to water motions coupled with PVME local relaxations that could strongly affect the QENS results. Both kinds of interpretations, confinement effects due to the increasing dynamic asymmetry and influence of localized motions, could provide alternative scenarios to the invoked "strong-to-fragile" transition.  相似文献   

14.
Discotic molecules have planar, disklike polyaromatic cores that can self-assemble into "molecular wires". Highly anisotropic charge transfer along the wires arises when there is sufficient intermolecular overlap of the pi-orbitals of the molecular cores. Discotic materials can be applied in molecular electronics, field-effect transistors, and-recently with record quantum efficiencies-photovoltaics (Schmidt-Mende, L.; Fechtenk?tter, A.; Müllen, K.; Moons, E.; Frien, R. H.; MacKenzie, J. D. Science 2001, 293, 1119). A combination of quasielastic neutron scattering (QENS) measurements with molecular dynamics simulations on the discotic molecule hexakis(n-hexyloxy)triphenylene (HAT6) shows that the dynamics of the cores and tails of discotic molecules are strongly correlated. Core and tail dynamics are not separated, the system being characterized by overall in-plane motion, on a time scale of 0.2 ps, and softer out-of-plane motions at 7 ps. Because charge transfer between the molecules is on similar time scales, these motions are relevant for the conducting properties of the materials. Both types of motion are dominated by van der Waals interactions. Small-amplitude in-plane motions in which the disks move over each other are almost entirely determined by tail/tail interactions, these also playing an important role in the out-of-plane motion. The QENS measurements reveal that these motions are little changed by passing from the columnar phase to the isotropic liquid phase, just above the clearing temperature. The model of four HAT6 molecules in a column reproduces the measured QENS spectrum of the liquid phase, suggesting that correlations persist within the liquid phase over about this number of disks.  相似文献   

15.
We have studied the dynamics of bis-thiourea pyridinium chloride and bromide by means of quasielastic neutron scattering (QENS). The QENS data allow describing the geometry of the in-plane motion of the pyridinium cation and reveal that it is similar to the motion previously observed in bis-thiourea pyridinium iodide. Molecular dynamics (MD) simulations have been performed to investigate the cation dynamics on the high temperature phase of the full series of compounds: bis-thiourea pyridinium chloride, bromide and iodide. Three different models of intermolecular potential have been tested and the agreement between the simulated and experimental elastic incoherent structure factors (EISFs) is used to select the more realistic one. The detailed analysis of the MD results indicates that Coulombic interactions together with the formation of hydrogen bonds between the pyridinium cation and the host sublattice influence strongly the geometry of the in-plane cation reorientation.  相似文献   

16.
We have investigated the dynamics of water confined in a molecular sieve, with a cylindrical pore diameter of 10 A, by means of quasielastic neutron scattering (QENS). Both the incoherent and coherent intermediate scattering functions I(Q,t) were determined by time-of-flight QENS and the neutron spin-echo technique, respectively. The results show that I(Q,t) is considerably more stretched in time with a slightly larger average relaxation time in the case of coherent scattering. From the Q dependence of I(Q,t) it is clear that the observed dynamics is almost of an ordinary translational nature. A comparison with previous dielectric measurements suggests a possible merging of the alpha and beta relaxations of the confined water at T=185 K, although the alpha relaxation cannot be directly observed at lower temperatures due to the severe confinement. The present results are discussed in relation to previous results for water confined in a Na-vermiculite clay, where the average relaxation time from spin-echo measurements was found to be slower than in the present system (particularly at low temperatures).  相似文献   

17.
Rapid reorientational motions of the B(12)H(12)(2-) icosahedral anion, a key intermediate in borohydride dehydrogenation, are revealed by quasielastic neutron scattering (QENS) measurements of Cs(2)B(12)H(12) between 430 and 530 K. At 430 K, over the range of momentum transfers collected, the elastic incoherent structure factor (EISF) is consistent with a model for reorientational jumps about a single molecular axis. At temperatures of 480 K and higher, however, the EISF suggests the emergence of multiaxis reorientation by dynamically similar, independent jumps about two axes, on average, preserving crystallographic order. Alternatively, if one assumes that the anions are undergoing temperature-dependent rotational trapping, then the EISF is also consistent with a jump model involving a temperature-dependent mobile fraction of anions statistically tumbling between discrete crystallographic sites. Although neutron vibrational spectra demonstrate that the anion torsional modes soften dramatically with increasing temperature, the QENS-derived activation energy of 333 meV for reorientation clearly shows that the anions are not undergoing isotropic rotational diffusion.  相似文献   

18.
In view of the importance of molecular dynamics in condensed matter both time scale and geometry of such processes should be determined experimentally. Whereas many techniques are available for the former, only NMR spectroscopy and neutron scattering can provide detailed information on the latter. Because of the different time scales of the dynamics, which the two techniques can detect best, direct comparisons of probing the geometry of the dynamics in the same system are scarce. Here we present such a comparison for the complex rotational motion of the phenylene groups in amorphous polycarbonate based on published (2)H NMR and newly recorded (13)C NMR data covering a wide temperature range, and recent quasielastic neutron scattering (QENS) data. We show that the results of the two techniques are in remarkable agreement, provided the data are consistently analyzed. No evidence is found for additional motions characterized by 90 degrees flips recently deduced from QENS data alone. Instead, the phenylene motion in the glassy state displays a broad heterogeneous distribution of rotational angles, about 80 degrees in width, centered at a flip angle of 180 degrees , which stays essentially constant over a wide temperature range. Thus, the phenylene motion that can consistently be observed in NMR and neutron scattering experiments is sensitive to the local packing.  相似文献   

19.
Protonic conduction across the membrane of a polymer electrolyte fuel cell is intimately related to the dynamic behavior of water present within the membrane. To further the understanding of water dynamics in these materials, quasielastic neutron scattering (QENS) has been used to investigate the picosecond dynamic behavior of water within a perfluorosulfonated ionomer (PFSI) membrane under increasing hydration levels from dry to saturation. Evaluation of the elastic incoherent structure factor (EISF) reveals an increase in the characteristic length-scale of confinement as the number of water molecules in the membrane increases, tending to an asymptotic value at saturation. The fraction of elastic incoherent scattering observed at high Q over all hydration levels is well fit by a simple model that assumes a single, nondiffusing hydronium ion per membrane sulfonic acid site. The quasielastic component of the fitted data indicates confined dynamic behavior for scattering vectors less than 0.7 A(-1). As such, the dynamic behavior was interpreted using continuous diffusion confined within a sphere at Q < 0.7 A(-1) and random unconstrained jump diffusion at Q > 0.7 A(-1). As the number of water molecules in the membrane increases, the characteristic residence times obtained from both models is reduced. The increased dynamical frequency is further reflected in the diffusion coefficients predicted by both models. Between low hydration (2 H2O/SO3H) and saturation (16 H2O/SO3H), the continuous spherical diffusion coefficient changes from 0.46 +/- 0.12 to 1.04 +/- 0.12 (10(-5) cm2/s) and jump diffusion indicates an increase from 1.21 +/- 0.03 to 2.14 +/- 0.08 (10(-5) cm2/s). Overall, the dynamic behavior of water has been quantified over different length scale regimes, the results of which may be rationalized on the basis of the formation of water clusters in the hydrophilic domain that expand toward an asymptotic upper limit with increased hydration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号