首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Chain architecture effect on static and dynamic properties of unentangled polymers is explored by molecular dynamics simulation and Rouse mode analysis based on graph theory. For open chains, although they generally obey ideal scaling in chain dimensions, local structure exhibits nonideal behavior due to the incomplete excluded volume(EV) screening, the reduced mean square internal distance(MSID) can be well described by Wittmer' theory for linear chains and the resulting chain swelling is architecture dependent, i.e., the more branches a bit stronger swelling. For rings, unlike open chains they are compact in term of global sizes. Due to EV effect and nonconcatenated constraints their local structure exhibits a quite different non-Gaussian behavior from open chains, i.e., reduced MSID curves do not collapse to a single master curve and fail to converge to a chain-length-independent constant, which makes the direct application of Wittmer's theory to rings quite questionable.Deviation from ideality is further evidenced by limited applicability of Rouse prediction to mode amplitude and relaxation time at high modes as well as the non-constant and mode-dependent scaled Rouse mode amplitudes, while the latter is architecture-dependent and even molecular weight dependent for rings. The chain relaxation time is architecture-dependent, but the same scaling dependence on chain dimensions does hold for all studied architectures. Despite mode orthogonality at static state, the role of cross-correlation in orientation relaxation increases with time and the time-dependent coupling parameter rises faster for rings than open chains even at short time scales it is lower for rings.  相似文献   

3.
A dynamic Monte Carlo algorithm is employed to investigate the dynamics of flexible linear and star chains on a cubic lattice at different concentrations. Some results for similar systems are also obtained with an off‐lattice algorithm. Diffusion coefficient, relaxation times and mean size data are combined into friction‐independent ratios in good agreement with the theoretical predictions from the Rouse theory. The relaxation times and amplitudes corresponding to the Rouse normal modes are analyzed in terms of their variation with the mode order. The end‐to‐end vector correlation times obtained from the simulations for linear chains are compared with the theoretical expression obtained from the Rouse theory. Deviations from this theory are observed for the contribution of the different modes in the non‐dilute systems. Finally, the time correlation function corresponding to a subchain's end‐to‐end vector is investigated. The results also show deviations from the Rouse theory, which are in qualitative agreement with the features observed in data from dielectric relaxation experiments of block copolymers.  相似文献   

4.
We have performed molecular dynamics, and lattice Monte Carlo simulations of polymeric melts in the vicinity of solid surfaces. The structural features of the solid-melt interface were very simple. The interfacial width was comparable to the segment size. Inside this narrow interface the segment density profile was oscillatory. The density oscillations were much less pronounced than those present at solid-atomic liquid interfaces. On a scale much larger than the segment size, chain conformations were found to be identical with those of ideal chains next to a reflective barrier. In particular, the number of surface-segment contacts scaled like the square root of the molecular weight. Extensive molecular dynamics simulations showed that chain desorption times increase with molecular weight but at a rate much slower than the longest relaxation time of Rouse chains. Therefore, sufficiently long chains desorbed almost freely from the surface despite the presence of attractive surface-segment interactions. A study of chain relaxation dynamics confirmed that the Rouse modes constitute an appropriate set of normal coordinates for chains in the melt interacting with a solid surface. The effect of the surface on mode relaxation was significant. All relaxation processes of chains located within a couple of radii of gyration from the surface were slowed down considerably. This effect, however was approximately the same for fast and slow modes and independent of molecular weight for sufficiently long chains.  相似文献   

5.
Extensive molecular-dynamics simulations have been performed to study the effect of chain conformational rigidity, controlled by bending and torsion potentials, on self-diffusion in polymer melts. The polymer model employs a novel torsion potential that avoids computational singularities without the need to impose rigid constraints on the bending angles. Two power laws are traditionally used to characterize the dependence of the self-diffusion coefficient on polymer length: D proportional to N(-nu) with nu=1 for NNe (reptation regime), Ne being the entanglement length. Our simulations, at constant temperature and density, up to N=250 reveal that, as the chain rigidity increases, the exponent nu gradually increases towards nu=2.0 for NNe. The value of Ne is slightly increased from 70 for flexible chains, up to the point where the crossover becomes undefined. This behavior is confirmed also by an analysis of the bead mean-square displacement. Subsequent investigations of the Rouse modes, dynamical structure factor, and chain trajectories indicate that the pre-reptation regime, for short stiff chains, is a modified Rouse regime rather than reptation.  相似文献   

6.
We have developed a single-chain theory that describes dynamics of associating polymer chains carrying multiple associative groups (or stickers) in the transient network formed by themselves and studied linear viscoelastic properties of this network. It is shown that if the average number N of stickers associated with the network junction per chain is large, the terminal relaxation time τ(A) that is proportional to τ(X)N(2) appears. The time τ(X) is the interval during which an associated sticker goes back to its equilibrium position by one or more dissociation steps. In this lower frequency regime ω<1/τ(X), the moduli are well described in terms of the Rouse model with the longest relaxation time τ(A). The large value of N is realized for chains carrying many stickers whose rate of association with the network junction is much larger than the dissociation rate. This associative Rouse behavior stems from the association/dissociation processes of stickers and is different from the ordinary Rouse behavior in the higher frequency regime, which is originated from the thermal segmental motion between stickers. If N is not large, the dynamic shear moduli are well described in terms of the Maxwell model characterized by a single relaxation time τ(X) in the moderate and lower frequency regimes. Thus, the transition occurs in the viscoelastic relaxation behavior from the Maxwell-type to the Rouse-type in ω<1/τ(X) as N increases. All these results are obtained under the affine deformation assumption for junction points. We also studied the effect of the junction fluctuations from the affine motion on the plateau modulus by introducing the virtual spring for bound stickers. It is shown that the plateau modulus is not affected by the junction fluctuations.  相似文献   

7.
8.
A detailed comparison is made between the experiment, prior simulations by other groups, and our simulation based on a newly designed dynamic Monte Carlo algorithm, on the dynamics of polyethylene (PE) melts. The new algorithm, namely, noncross random two-bead move has been developed on a high coordination lattice (the 2nnd lattice) for studying the dynamics of realistic polymers. The chain length (molecular weight) in our simulation ranges from C40 (562 Da) to C324 (4538 Da). The effects of finite chain length have been confirmed and significant non-Gaussian statistics evidently results in nonstandard static and dynamic properties of short PE chains. The diffusion coefficients scale with molecular weight (M) to the −1.7 power for short chains and −2.2 for longer chains, which coincides very well with experimental results. No pure Rouse scaling in diffusion has been observed. The transitional molecular weight to the entanglement regime is around 1500 Da. The detailed mean square displacements of middle bead (g1) are presented for several chain lengths. The reptation-like slowdown can be clearly observed only above M ∼ 2400 Da. The slope 0.25 predicted by the theory for the intermediate regime is missing; instead a slope close to 0.4 appears, indicating that additional relaxation mechanism exists in this transitional region. The relaxation times extracted by fitting the autocorrelation function of end-to-end vectors with reptation model scale with M to 2.5 for long chains, which seemingly conflicts with the scaling of diffusion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2556–2571, 2006  相似文献   

9.
Doi and Edwards (DE) proposed that the relaxation of entangled linear polymers under large deformation occurs in two steps: the fast chain contraction (via the longitudinal Rouse mode of the chain backbone) and the slow orientational relaxation (due to reptation). The DE model assumes these relaxation processes to be independent and decoupled. However, this decoupling is invalid for a generalized convective constraint release (CCR) mechanism that releases the entanglement on every occasion of the contraction of surrounding chains. Indeed, the decoupling does not occur in the sliplink models where the entanglement is represented by the binary interaction (hooking) of chains. Thus, we conducted primitive chain network simulations based on a multichain sliplink model to investigate the chain contraction under step shear. The simulation quantitatively reproduced experimental features of the nonlinear relaxation modulus G(t,γ). Namely, G(t,γ) was cast in the time-strain separable form, G(t,γ)=h(γ)G(t) with h(γ)=damping function and G(t)=linear modulus, but this rigorous separability was valid only at times t comparable to the terminal relaxation time, although a deviation from this form was rather small (within ±10%) at t>τ(R) (longest Rouse relaxation time). A molecular origin of this delicate failure of time-strain separability at t~τ(R) was examined for the chain contour length, subchain length, and subchain stretch. These quantities were found to relax in three steps, the fast, intermediate, and terminal steps, governed by the local force balance between the subchains, the longitudinal Rouse relaxation, and the reptation, respectively. The contributions of the terminal reptative mode to the chain length relaxation as well as the subchain length/stretch relaxation, not considered in the original DE model, emerged because the sliplinks (entanglement) were removed via the generalized CCR mechanism explained above and the reformation of the sliplinks was slow at around the chain center compared to the more rapidly fluctuating chain end. The number of monomers in the subchain were kept larger at the chain center than at the chain end because of the slow entanglement reformation at the center, thereby reducing the tension of the stretched subchain at the chain center compared to the DE prediction. This reduction of the tension at the chain center prevented completion of the length equilibration of subchains at t~τ(R) (which contradicts to the DE prediction), and it forces the equilibration to complete through the reptative mode at t?τ(R). The delicate failure of time-strain separability seen for G(t,γ) at t~τ(R) reflects this retarded length equilibration.  相似文献   

10.
Using normal mode transformation obtained in Part 1 of this series[1], the exact analytical expressions for the mean‐square displacements of junctions and non‐junction beads, the autocorrelation functions of the end‐to‐end chain vectors between neighboring junctions, and those of subchain vectors of a two‐dimensional regular network consisting of "bead and spring" Rouse chains are obtained. Contributions of intra‐ and interchain relaxation processes to the local dynamic characteristics considered are compared. The time behavior of dynamic quantities obtained is estimated for different scales of motions. The possibility of describing long‐time relaxation of a two‐dimensional network by a simplified coarse‐grained network model is demonstrated. It is shown that the local relaxation properties of a two‐dimensional polymer network (as well as a three‐dimensional network) on scales smaller than the average distance between cross‐links are very close to those of a single Rouse chain. The large‐scale collective relaxation of the polymer networks having a two‐dimensional connectivity differs considerably from that of the three‐dimensional networks.  相似文献   

11.
李安邦 《高分子科学》2012,30(3):350-358
This work investigates the effects of the excluded volume and especially those of the chain stiffness on the structural and dynamical properties of a model polymer chain.The theoretical framework is the same as in the recent works by Steinhauser et al.,where a Rouse approach is adopted.Our model differs in that our chains have a finite average bending angle.As in the works by Steinhauser et al.,Langevin dynamic simulations were performed without hydrodynamic interactions.Whereas this doesn’t impact the static properties we obtain,it also allows us to compare our results on dynamic properties to those predicted by Rouse theory,where hydrodynamic interactions are also neglected.Our results show that the structural properties are very sensitive to the chain stiffness,whereas the dynamic scaling laws remain the same as those by Rouse theory,with the prefactor depending on the persistence length.  相似文献   

12.
The equilibrium properties of an isolated polyethylene ring chain are studied by using molecular dynamics (MD) simulations. The results of an 80-bond linear chain are also presented, which are in agreement with previous studies of square-well chains and Lennard-Jones (LJ) homopolymers. Mainly, we focus on the collapse of polyethylene ring chains. At high temperatures, a fully oblate structure is observed for the ring chains with different chain lengths. For such an oblate structure, a shape factor of delta(*)=0.25 and a rodlike scaling relation between the radius of gyration and chain lengths could be deduced easily in theory, and the same results are obtained by our MD simulations. Such an oblate structure can be obtained by Monte Carlo simulation only for sufficient stiff ring chains. When the temperature decreases, an internal energy barrier is observed. This induces a strong peak in the heat capacity, denoting a gas-liquid-like transition. This energy barrier comes mainly from the local monomer-monomer interactions, i.e., the bond-stretching, the bond-bending, and the torsion potentials. A low temperature peak is also observed in the same heat capacity curve, representing a liquid-solid-like transition. These numerical simulation results support a two-stage collapse of polyethylene ring chains; however, the nature should be different from the square-well and LJ ring chains.  相似文献   

13.
Generalization of the Rouse model without any use of the postulates concerning the Gaussian distribution of the vector connecting the ends of segments is advanced. In the initial (in general, nonlinear) Langevin equations, self-averaging over continuous fragments of a macromolecule naturally defines a linear term for the tagged chain, and this term differs from the entropy term of the classical Rouse model only by the numerical coefficient. According to the inertia-free approximation, the initial decay rates of correlation functions for the normal modes are described by the Rouse model independently of the character of fluctuations of the vector connecting the ends of the Kuhn segment. This statement is valid for any moment if the initial Langevin equations are treated in terms of the approximation of dynamic self-consistency. Simulation of the Fraenkel chains by the method of Brownian dynamics shows that decay of autocorrelation functions of shortwave normal modes is fairly described by the linearized equations for a given model of a chain and that the Rouse equation can be used for the long-wave modes. The results of this study make it possible to explain a marked difference between the lengths of the Kuhn and Rouse segments that is estimated from static and dynamic experiments.  相似文献   

14.
We generalize the nonlinear Langevin equation theory of activated single particle dynamics to describe the correlated motion of two tagged spherical particles in a glass- or gel-forming fluid as a function of their initial separation. The theory is built on the concept of a two-dimensional dynamic free energy surface which quantifies the forces on two particles moving in a cooperative manner. For the hard sphere fluid, above a threshold volume fraction we generically find two relaxation channels corresponding largely, but not exclusively, to a center-of-mass-like displacement and a radial separation of the two tagged particles. The entropic barriers and mean first passage times are computed and found to systematically vary with volume fraction and initial particle separation; both oscillate as a function of the latter in a manner related to the equilibrium pair correlation function. A dynamic correlation length is estimated as the length scale beyond which the two-particle activated dynamics becomes uncorrelated in space and time, and is found to modestly grow with increasing mean relaxation time. The theory is also applied to a simplified model of cage escape, the elementary step of structural relaxation. Predictions for characteristic relaxation times, translation-relaxation decoupling, and stretched-exponential decay of time correlation functions are obtained. A novel mechanism for understanding why strong decoupling emerges in the activated regime, but stretched nonexponential time correlation functions do not change shape as the mean relaxation time grows, is presented and favorably compared with experiment. The theory may serve as a starting point for constructing a predictive model of multiple correlated caging and hopping (forward and backward) events of a pair of tagged particles.  相似文献   

15.
Shear stress relaxation modulus GS(t) curves of entanglement-free Fraenkel chains have been calculated using Monte Carlo simulations based on the Langevin equation, carrying out both in the equilibrium state and following the application of a step shear deformation. While the fluctuation-dissipation theorem is perfectly demonstrated in the Rouse-chain model, a quasiversion of the fluctuation-dissipation theorem is observed in the Fraenkel-chain model. In both types of simulations on the Fraenkel-chain model, two distinct modes of dynamics emerge in GS(t), giving a line shape similar to that typically observed experimentally. Analyses show that the fast mode arises from the segment-tension fluctuations or reflects the relaxation of the segment tension created by segments being stretched by the applied step strain-an energetic-interactions-driven process-while the slow mode arises from the fluctuations in segmental orientation or represents the randomization of the segmental-orientation anisotropy induced by the step deformation-an entropy-driven process. Furthermore, it is demonstrated that the slow mode is well described by the Rouse theory in all aspects: the magnitude of modulus, the line shape of the relaxation curve, and the number-of-beads (N) dependence of the relaxation times. In other words, one Fraenkel segment substituting for one Rouse segment, it has been shown that the entropic-force constant on each segment is not a required element to give rise to the Rouse modes of motion, which describe the relaxation modulus of an entanglement-free polymer over the long-time region very well. This conclusion provides an explanation resolving a long-standing fundamental paradox in the success of Rouse-segment-based molecular theories for polymer viscoelasticity-namely, the paradox between the Rouse segment size being of the same order of magnitude as that of the Kuhn segment (each Fraenkel segment with a large force constant HF can be regarded as basically equivalent to a Kuhn segment) and the meaning of the Rouse segment as defined in the Rouse-chain model. The general agreement observed in the comparison of the simulation and experimental results indicates that the Fraenkel-chain model, while being still relatively simple, has captured the key element in energetic interactions--the rigidity on the segment--in a polymer system.  相似文献   

16.
Spurred by an experimental controversy in the literature, we investigate the end-monomer dynamics of semiflexible polymers through Brownian hydrodynamic simulations and dynamic mean-field theory. Precise experimental observations over the last few years of end-monomer dynamics in the diffusion of double-stranded DNA have given conflicting results: one study indicated an unexpected Rouse-like scaling of the mean squared displacement (MSD) ?r(2)(t)? ~ t(1/2) at intermediate times, corresponding to fluctuations at length scales larger than the persistence length but smaller than the coil size; another study claimed the more conventional Zimm scaling ?r(2)(t)? ~ t(2/3) in the same time range. Using hydrodynamic simulations, analytical and scaling theories, we find a novel intermediate dynamical regime where the effective local exponent of the end-monomer MSD, α(t) = d log?r(2)(t)?/d log t, drops below the Zimm value of 2/3 for sufficiently long chains. The deviation from the Zimm prediction increases with chain length, though it does not reach the Rouse limit of 1/2. The qualitative features of this intermediate regime, found in simulations and in an improved mean-field theory for semiflexible polymers, in particular the variation of α(t) with chain and persistence lengths, can be reproduced through a heuristic scaling argument. Anomalously low values of the effective exponent α are explained by hydrodynamic effects related to the slow crossover from dynamics on length scales smaller than the persistence length to dynamics on larger length scales.  相似文献   

17.
The dynamic Monte Carlo algorithm is employed to explore the dynamics of flexible linear chains. The chains are represented by the bond‐fluctuation model with and without attractions between non‐bonded units placed at close distances. This mimics the behavior of real chains in the good and poorer solvents. We obtain the chain sizes, diffusion coefficients, Rouse modes, and their relaxation times. We also evaluate the time correlation function of the end‐to‐end vector at different concentrations. Subsequently, we compare the dependence of the simulation results on chain length, solvent quality, concentration, and mode order with the corresponding theoretical predictions. We observe a retardation of diffusion for non‐dilute systems close to the theta state. This retardation is too high to be exclusively attributed to the increase of global friction and can be caused by temporary adherence of the chains to transient clusters.  相似文献   

18.
We present a novel analytically tractable model for stiff chain molecules. The equilibrium distribution function of the chain is derived using the maximum-entropy principle. For that purpose, we first formulate a discrete chain model, where the connections of the points and the restriction on bending are taken into account via constraints. We then perform the limit to a continuous chain and show that the mean-square end-to-end distance and the radius of gyration of the continuous chain are identical with the same quantities of the Kratky-Porod wormlike chain. The dynamics of our chain is investigated in dilute solution without hydrodynamic interactions. The linear dynamical equation is solved by a normal mode analysis. We discuss the dependence of the relaxation times on the single parameter of the model, the persistence length. For small persistence lengths we obtain the well known relaxation times of the Rouse model. In the stiff-chain limit, we find the pure bending relaxation times and, in addition, the rotational relaxation time.  相似文献   

19.
The relaxation of single grafted semiflexible chains freely rotating around the grafting point is investigated by means of two dimensional computer simulations and scaling arguments. Both free chains and chains surrounded by topological obstacles are considered. We compute the autocorrelation of the end-to-end vector for the whole chain and for terminal sections of various lengths. Our results are relevant for the relaxation of star polymers with stiff arms or branched semiflexible polymers moving in an array of obstacles.  相似文献   

20.
Monte Carlo simulations of coarse–grained models of macromolecules offer a unique tool to study the interplay between coil conformations, thermodynamic properties, and chain configurational relaxation and diffusion. Two examples are discussed where the chain conformation strongly differs from a gaussian coil: (i) collapsed chains in a bad solvent, where anomalous diffusion occurs in the Rouse limit and the relaxation time increases at least with the third power of chain length. (ii) Expulsion of a chain from a semidilute polymer brush. The initially stretched chain contracts to a gaussian coil and the center of mass moves outward with constant velocity until it reaches the region of the “last blob” where crossover to diffusive behavior occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号